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Abstract

Phasor measurement units (PMUs) have been put into power grid for real-time moni-

toring. This research investigates the PMU data for steady state estimation and dynamic

model estimation. It focuses on three main research areas to enhance the security of the

power system monitoring. First, optimal PMU placement (OPP) problem is developed to

minimize the number of PMUs required for the system to be completely observable using

mixed integer linear programming and nonlinear programming. Second, PMU measurements

are ranked for oscillation monitoring based on two approaches: oscillation mode observability

and Prony analysis. Further, the principles, multi-channel data handling, and noise resilience

techniques of three eigenvalue identification methods used in power systems: Prony analysis,

Matrix Pencil (MP), and Eigensystem Realization Algorithm (ERA) are examined.

The first part of this research discusses the optimal PMU placement (OPP) problem

to find the optimal number of PMUs to make the system fully observable. Two different

formulations are presented for modeling power grid observability to solve the OPP problem:

mixed integer linear programming (MILP) and nonlinear programming (NLP). For each

formulation, modeling of power flow measurements, zero injection, limited communication

facility, single PMU failure, and limited channel capacity is studied. MILP zero injection

formulation is improved to solve the redundant observability and optimality limitations. A

new formulation for nonlinear programming-based PMU placement considering zero injection

measurement is proposed. A comparison between MILP and NLP formulations is conducted

to show the advantages and disadvantages of each formulation.

vi



www.manaraa.com

The second part of this research is to rank PMU measurements for oscillation monitoring

based on two approaches: oscillation mode observability and Prony analysis. In the first ap-

proach, the system model is assumed known and the critical oscillation mode observability

of different measurements are compared. In the second approach, the dynamic model of the

system is not known. Prony analysis is employed to identify critical oscillation modes based

on PMU measurements. Measurements at different locations are compared for their char-

acteristics in Prony analysis. Specifically, singular values of Hankel matrices are compared.

The two approaches lead to the same conclusion. Their internal connection is presented in

this research. As a step further, sensitivity analysis of model order assumption and noise

level in Prony analysis is conducted to show singular values of Hankel matrices can indeed

serve as indicators of the quality of oscillation monitoring.

In addition, power system eigenvalues from PMU measurement data are identified us-

ing Prony analysis, matrix Pencil (MP), and Eigensystem Realization Algorithm (ERA).

This part sheds insight on the principles of the three methods: eigenvalue identification

through various Hankel matrix formulation. Further, multiple channel data handling and

noise resilience techniques are investigated. In the literature, singular value decomposition

(SVD)-based rank reduction technique has been applied to MP and resulted in a reduced-

order system eigenvalue estimation and an excellent noise resilient feature. In this part

of the research, ERA is refined using the SVD-based rank reduction to achieve a superior

performance. Moreover, a reduced-order Prony analysis method is invented. With the pro-

posed technique, Prony analysis can not only give reduced-order system eigenvalues, but also

become noise resilient.

This dissertation has been resulted in three conference papers (two published and one

accepted) and two journal papers (one published and one in revision process). The future

work of this dissertation will examine the dynamic parameter estimation technique using the

measurement-based methods. Using the PMU data and measurement-based methods of the

vii



www.manaraa.com

system identification can provide an accurate dynamic parameter estimation without prior

information of the system transfer function. Generator parameters such as inertia constant,

damping coefficients, and regulation speed constant can be estimated.

viii
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Chapter 1: Introduction

1.1 Background

Power system security needs to have a real-time monitor for situation awareness of the

operating conditions of the system. In a control center, the state estimator deals with the

measurements received from the remote terminal units (RTUs) at the substations and gives

the best system state variables. Those measurements include bus voltages, branch currents,

real and reactive power flows, and power injections. Recently, phasor measurement units

(PMUs) with time tags from global positioning system (GPS) can provide synchronized

phasor measurements of voltages and currents [1, 2]. PMUs provide better situation aware-

ness due to their much faster sampling rate (30 ∼ 120 Hz) [3]. PMUs have been put into

power grid for real-time monitoring. PMU installation at the power system has been rapidly

increased in the recent years as shown in Fig. 1.1. According to the U.S. Department of

Energy (2018), more than 2500 PMUs are installed in the U.S. power systems compared to

1700 in 2015. With this rapid increase, the analysis and identification of the PMU measure-

ments for steady state and dynamic model estimation are of practical interest. The objective

of this research is to investigate PMU issues including optimal PMU placement, PMU data

for oscillation monitoring, and PMU measurements for eigenvalue estimation.

1.2 Phasor Measurement Unit (PMU)

Phasor measurement unit (PMU)-based sensors are used to collect time-stamped mea-

surements from global positioning system (GPS) [1, 2]. PMU sensors obtain synchronized

1
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(a) (b)

Figure 1.1: PMU locations in North American power grid. (a)2011. (b)2015. Maps
courtesy of the North American SynchroPhasor Initiative and the U.S. Department of

Energy [4]. Permission is included in Appendix B.

voltage and current phasors measurements at a faster rate of 30 ∼ 120 Hz and can give a

superior situation awareness of the power grid [3]. PMU hardware block diagram consists

of analog-to-digital converter, phase-locked oscillator, GPS receiver, anti-aliasing filters, and

microprocessor as shown in Fig. 1.2 [5]. The analog AC waveforms are filtered out and

digitized using anti-aliasing filter (above Nyquist rate) and analog-to-digital converter, re-

spectively. The GPS pulse per second is converted into a high speed timing pulses sequence

through the phase-locked oscillator. Discrete Fourier Transform phasor calculation is ob-

tained by the microprocessor. Then data concentrator can provide the time-stamped phasor

measurements.

1.3 Optimal PMU Placement (OPP)

Although PMUs are superior devices for improving the power system security, installing

PMUs at every substation in the system is expensive and uneconomical. According to the

U.S. Department of Energy, the overall cost of one PMU installation (including communi-

cation, security, labor, and equipment) is ranged from $40,000 - $180,000 as shown in Fig.

2
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Anti-Aliasing 

Filter

Analog-to-

Digital Converter

Phase-Locked 

Oscillator

Microprocessor

GPS Receiver

ModemAnalog Inputs

Figure 1.2: Phasor measurement unit block diagram.

1.3 [6]. When a PMU is placed at one bus, it can measure the voltage phasor of the bus

and current phasors of all lines connected to that bus making the system observable [7].

Therefore, optimal PMU placement (OPP) problem should be solved to make the system

entirely observable by installing less PMU devices at specific buses. In the literature, optimal

PMU placement is solved using two techniques which are heuristic-based and mathematical

programming-based. Mathematical programming-based methods are developed with two

main formulations: MILP-based and nonlinear programming-based. This research proposes

a new effective zero injection formulation in nonlinear programming to provide the minimum

number of PMUs compared to other methods. Further, it improves MILP zero injection for-

mulation to solve the observability redundancy and optimality drawbacks.

1.4 PMU for Inter-Area Oscillation Identification and Eigenvalue Estimation

Phasor measurement units have enhanced the accuracy of power grid real-time moni-

toring. Using PMU data for inter-area oscillation identification has been studied in the

literature, and an IEEE PES taskforce report [8] has been published in 2012. Power system

3
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Figure 1.3: Phasor measurement unit installation cost. Reference: U.S. Department of
Energy - Office of Electricity Delivery and Energy Reliability [6]. Permission is included in

Appendix B.

models are nonlinear and complex systems. The modal information is identified from the

system response to a perturbation to produce an adequate reduced order model. Prony anal-

ysis, matrix Pencil, and Eigensystem Realization Algorithm (ERA) are measurement-based

identification methods for ringdown signals captured for a transient event [9]. This research

contribution is categorized into two main parts. In the first part, the PMU measurements

are ranked for oscillation monitoring based on two approaches which are oscillation mode

observability and Prony analysis. The critical oscillation modes based on PMU measure-

ments are identified using Prony analysis. The Hankel matrix singular values of the PMU

measurements at different locations are compared. In the second part, ERA method is re-

fined by applying SVD-based rank reduction on both Hankel matrices to achieve superior

performance. A reduced-order Prony analysis method through Hankel matrix rank reduction

is invented. The new Prony analysis can accurately identify system eigenvalues from noisy

signals.

4
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1.5 Outline of the Dissertation

This dissertation is organized as follows. Chapter 2 focuses on the optimal PMU place-

ment problem using mixed integer linear programming and nonlinear programming. Power

flow and zero injection measurement modeling along with restricted communication facili-

ties, PMU failure, and limited channel capacity contingencies are investigated. MILP zero

injection formulation to overcome the observability redundancy and optimality drawbacks

and a new formulation for nonlinear programming-based PMU placement for zero injection

measurement are proposed. Chapter 3 discusses the PMU measurements oscillation moni-

toring using Prony analysis and oscillation mode observability. PMU measurements ranking

for oscillation monitoring is proposed. Chapter 4 investigates Prony analysis, Matrix Pencil

(MP), and Eigensystem Realization Algorithm (ERA) for identifying power system eigenval-

ues from PMU measurement data. The multiple channel data and noise resilience techniques

for the three methods are investigated. An improved ERA using SVD-based rank reduction

and a reduced-order Prony analysis to provide superior results are proposed. Chapter 5

concludes the dissertation and presents the future work.

5
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Chapter 2: Optimal PMU Placement for Steady State Estimation

2.1 Introduction

The power system is required to have a real-time monitoring of the system operating

conditions to enhance its security. In power grids, the measured bus voltage, currents,

real and reactive power are collected by remote terminal units at each substation. Those

measurements are sent to a control center. A control center then conducts state estimation

to determine the best estimates of system’s state variables (every node’s voltage magnitude

and phase angle). Most recently, phasor measurement unit (PMU)-based sensors are used

to collect time-stamped measurements from global positioning system (GPS) [1, 2]. PMU

sensors obtain synchronized voltage and current phasors measurements at a faster rate of

(30 ∼ 120 Hz) [3]. Hence, PMUs can give a superior situation awareness of the power grid.

By installing a PMU at one bus, it can obtain the bus voltage phasor and all current phasors

of the branches connected to that bus [7]. However, placing PMU sensors at all buses of

the system can be expensive and uneconomical. Therefore, optimal PMU placement (OPP)

problem is investigated in this chapter 1 to make the system entirely observable by installing

less PMU devices at specific buses.

Heuristic and mathematical programming techniques are used to solve the OPP prob-

lem. The heuristic technique is based on search process to obtain the OPP. There are several

heuristic-based techniques that have been studied in the literature. A graph theory and sim-

ulated annealing algorithm to obtain the minimum number of PMU sensors are developed

1This chapter was published in International Transactions on Electrical Energy Systems [10], 2019. Per-
mission is included in Appendix B.

6
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in [11]. Then other heuristic-based approaches have been proposed such as simulated anneal-

ing with Tabu search [12], spanning tree [13], genetic algorithm [14], nondominated sorting

genetic [15], Tabu search genetic [16], particle swarm optimization approach [17], and re-

cursive Tabu search [18]. An immunity genetic algorithm [19] and binary particle swarm

optimization [20,21] are used to solve the OPP problem.

Heuristic-based OPP does not guarantee a global optimum solution. Hence, two major

mathematical programming approaches are developed in the literature: MILP and NLP.

While MILP formulations guarantee a global optimum solution, NLP formulations provide

several local minimum solutions.

Integer linear programming (ILP) to obtain the OPP is introduced in [2,7]. Several algo-

rithms and techniques considering integer linear programming and contingency-constrained

PMU placement are developed in [22–28]. In [29], ILP is used with auxiliary variable to

find the OPP in case of zero injection. The same method considering conventional measure-

ments is developed in [30]. Zero injection redundancy limitation and global optimal solution

considering mutual buses are presented in [31]. Reference [32] proposes an integer quadratic

programming approach. A weighted least square algorithm using nonlinear observability

constraint is presented in [33]. Nonlinear programming (NLP) formulations are introduced

in [34]. This type of formulations has been explored under several contingencies in [35, 36].

In [37], MILP and NLP comparison is conducted using a simple system, and limitation of zero

injection formulation for NLP is discussed. However, zero injection formulation in nonlinear

programming-based PMU placement has not been properly solved in the literature.

In this chapter, modeling power grid observability to solve the OPP problem is imple-

mented using two different approaches which are MILP and NLP. Power flows, zero injections,

restricted communication facilities, PMU failure, and limited channel capacity are discussed.

A new nonlinear programming formulation for zero injection is proposed. The proposed for-

mulation is examined by validating the results with the MILP formulation. MILP and

7
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NLP comparison is conducted to illustrate their advantages and disadvantages. The main

contributions of this chapter can be summarized as follows. First, a new effective zero injec-

tion formulation in nonlinear programming is proposed and validated to provide minimum

number of PMUs compared to other methods. Second, MILP zero injection formulation

is improved to solve the observability redundancy and optimality drawbacks. Third, two

mathematical programming methods are compared under several contingencies applied to

different IEEE test systems, and the proposed zero injection formulations are evaluated on

a large 2383-bus Polish system.

The rest of this chapter is organized as follows. Sections 2.2 and 2.3 present MILP

and NLP formulations. Section 2.4 proposes the effective power flow and zero injection

measurement formulations and investigates the aforementioned contingencies. Section 2.5

concludes this chapter.

2.2 Mixed Integer Linear Programming

Power system state estimation with a DC power flow is analyzed in this chapter, and

(2.1) presents the linear measurement function which maps the state to the measurement.

z = Hx+ e (2.1)

where z represents the measurement vector, H is the measurement matrix, x is the state

variable vector, and e is the error measurement vector. The state variables are the voltage

phase angle for each bus in the power system. The PMUs can obtain the measurements

including the voltage phase angle (θi) of Bus i and the power flow from Bus i to Bus j,

where j ∈ adi represents the adjacent buses to Bus i. Thus, the PMU will measure θi, and

θj can be obtained as the power flow Pij is measurable. Therefore, Bus i with its adjacent

buses are observable when a PMU is installed only at Bus i.

8
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In other words, Bus i itself can be observable with at least a single PMU placed at this

bus or one of its adjacent buses. This is can be represented by the following inequality:

fi(x) = xi +
∑
j∈adi

xj ≥ 1 (2.2)

where fi(x) is the observability function for Bus i, xi is a binary decision variable to install

a PMU at Bus i (xi = 1) or not (xi = 0), and xj is the binary decision variable for the buses

adjacent to that bus.

The OPP for the IEEE 14-bus system (shown in Fig. 2.1) [38] is formulated as the

following:

min
x

14∑
k=1

xk

subject to: fi(x) ≥ 1

xi ∈ {0, 1}, i = 1, 2, · · · 14.

where

fi(x) =



f1 = x1 + x2 + x5 ≥ 1, f2 = x1 + x2 + x3 + x4 + x5 ≥ 1,

f3 = x2 + x3 + x4 ≥ 1, f4 = x2 + x3 + x4 + x5 + x7 + x9 ≥ 1,

f5 = x1 + x2 + x4 + x5 + x6 ≥ 1, f6 = x5 + x6 + x11 + x12 + x13 ≥ 1,

f7 = x4 + x7 + x8 + x9 ≥ 1, f8 = x7 + x8 ≥ 1,

f9 = x4 + x7 + x9 + x10 + x14 ≥ 1, f10 = x9 + x10 + x11 ≥ 1,

f11 = x6 + x10 + x11 ≥ 1, f12 = x6 + x12 + x13 ≥ 1,

f13 = x6 + x12 + x13 + x14 ≥ 1, f14 = x9 + x13 + x14 ≥ 1

9
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This OPP problem is formulated as MILP and solved by MATLAB’s intlinprog function.

The OPP result indicates that only four PMUs can be installed on buses 2, 8, 10, and 13 to

make the system entirely observable. Generalized MILP can be expressed as [7]:

min
x

N∑
k=1

wk xk (2.3a)

subject to: Ax ≥ B (2.3b)

xi ∈ {0, 1}, i = 1, · · · , N (2.3c)

where xi is the binary decision, and wk is the PMU placement cost. It is assumed that

the PMUs have the placement cost wi = 1 making the PMU placement cost minimization

equivalent to the number of PMUs minimization. Entries of A and the B matrices are:

a(i, j) =


1, Bus i and Bus j are connected

1, i is equal to j

0. Otherwise

B =

[
1 1 · · · 1

]T
2.3 Nonlinear Programming

OPP problem can be formulated and solved using nonlinear programming (NLP) which

based on sequential quadratic programming (SQP) [33,34]. NLP method can produce more

than one solution to the OPP problem, while the MILP formulation can provide a single

solution.

10
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For NLP, xi is considered as a continuous decision variable rather a binary variable as

the MILP formulation. Therefore, xi is forced to be 1 or 0 by the following constraint:

xi(xi − 1) = 0.

The quadratic objective function, which represents the overall PMU placement cost, is

minimized by the NLP formulation subjected to nonlinear equality constraints. The decision

variables are 0 and 1 which indicate the lower and upper bounds of the problem formulation.

Hence, the nonlinear constraints can assure the complete observability of the system [33,34].

The NLP formulation for the OPP problem can be expressed as:

min
x

J(x) = xTWx =
N∑
k=1

wk x
2
k (2.4a)

s.t.: gi(x) = ( 1− xi)
∏
j∈adi

( 1− xj) = 0 (2.4b)

0 ≤ xi ≤ 1, for all i ∈ S (2.4c)

where J(x) represents the OPP objective function, xT is the transposed vector of x, W is

the diagonal weight matrix, adi indicates the adjacent buses of Bus i, and S represents the

system buses set.

This NLP formulation is a nonconvex optimization problem since a number of local

minimum solutions can result in using the nonlinear equality constraints [34], and it is

solved by sequential quadratic programming (SQP) algorithm. As a consequence, several

solutions for the OPP problem can be obtained by choosing different initial conditions x.

The IEEE 14-bus system [38] as shown in Fig. 2.1 is used as an example to solve the

OPP problem with the NLP formulation, and the NLP and MILP solutions are compared

to each other. The NLP is formulated as follows.

11
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min
x

14∑
k=1

x2
k

s.t.: gi(x) = ( 1− xi)
∏
j∈adi

( 1− xj) = 0

0 ≤ xi ≤ 1, i = 1, 2, · · · 14.

where gi(x) will be as follows.

gi(x) =



g1 = ( 1− x1)( 1− x2)( 1− x5) = 0,

g2 = ( 1− x2)( 1− x1)( 1− x3)( 1− x4)( 1− x5) = 0,

g3 = ( 1− x3)( 1− x2)( 1− x4) = 0,

g4 = ( 1− x4)( 1− x2)( 1− x3)( 1− x5)( 1− x7)( 1− x9) = 0,

g5 = ( 1− x5)( 1− x1)( 1− x2)( 1− x4)( 1− x6) = 0,

g6 = ( 1− x6)( 1− x5)( 1− x11)( 1− x12)( 1− x13) = 0,

g7 = ( 1− x7)( 1− x4)( 1− x8)( 1− x9) = 0,

g8 = ( 1− x8)( 1− x7) = 0, g9 = ( 1− x9)( 1− x4)( 1− x7)( 1− x10)( 1− x14) = 0,

g10 = ( 1− x10)( 1− x9)( 1− x11) = 0, g11 = ( 1− x11)( 1− x6)( 1− x10) = 0,

g12 = ( 1− x12)( 1− x6)( 1− x13) = 0,

g13 = ( 1− x13)( 1− x6)( 1− x12)( 1− x14) = 0,

g14 = ( 1− x14)( 1− x9)( 1− x13) = 0

It is assumed that the weight of all PMUs is wi = 1 to make the installation cost

minimization equivalent to the number of PMUs minimization. The MATLAB’s function

fmincon is used to solve this nonconvex optimization problem with NLP formulation and

SQP solver.
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Figure 2.1: IEEE 14-bus system.

The NLP obtains various solutions to the OPP problem based on the initial points x.

Therefore, the initial points are programmed to be random numbers in the feasible region

between the upper and lower bounds of one and zero. As a result, optimal solutions are

found after several iterations:

x =
[
0 1 0 0 0 0 0 1 0 1 0 0 1 0

]T
, x =

[
0 1 0 0 0 0 1 0 0 1 0 0 1 0

]T
, x =

[
0 1 0 0 0 0 1 0 0 0 1 0 1 0

]T
,

x =
[
0 1 0 0 0 1 0 1 1 0 0 0 0 0

]
,T and x =

[
0 1 0 0 0 1 1 0 1 0 0 0 0 0

]T
.

The above solutions indicate that the OPP buses are the following five sets: {2, 8, 10, 13},

{2, 7, 10, 13}, {2, 7, 11, 13}, {2, 6, 8, 9}, or {2, 6, 7, 9}. Note that the first optimal solution is

the same as the MILP solution.

Thus, NLP is another effective algorithm to solve the OPP problem by obtaining various

optimal solutions to select from. MILP and NLP comparison for the OPP problem is con-

ducted using four different systems which are IEEE 14-, 57-, 118-, and 300-bus systems [38]

as shown in Table 2.1.
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Table 2.1: OPP results using MILP and NLP/SQP

IEEE Test
Number of

Number of
System

PMUs
NLP Solutions

MILP NLP

14-bus 4 4 5
57-bus 17 17 19
118-bus 32 32 10
300-bus 87 87 8

2.4 OPP Case Studies

2.4.1 Power Flow Measurements

Suppose that Branch ij in the system has a meter to measure the power flow. In the

case that one of the state variables of Bus i or j (θi or θj) is measured, the state variable of

the other bus can be provided since the power flow (Pij) is known.

2.4.1.1 MILP Approach

With the information of the power flows, the observability constraints must be reformu-

lated to find the optimal solution. If the power flow measurement on the Branch i–j is not

given, Bus i and Bus j have the following observability constraints:

fi =
∑
k

Aikxk ≥ 1 (2.5a)

fj =
∑
k

Ajkxk ≥ 1 (2.5b)

When the power flow measurement on Branch k of Bus i and Bus j is known, the

constraints (2.5a) and (2.5b) are modified to be a joint observability constraint as follows

[7, 24].
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fflow,k = fi + fj ≥ 1 (2.6)

Constraint (2.6) indicates that if Bus i or Bus j is observable, the other bus can also be

observable since the power flow of Branch k is given.

2.4.1.2 NLP Approach

Similarly, the observability constraints of the nonlinear programming must be reformu-

lated to find the optimal solution with the measured power flow. Therefore, the observability

constraints of Bus i and Bus j are modified to be a joint observability constraint as the fol-

lowing [35]:

gflow,k = gigj = 0 (2.7)

Constraint (2.7) can result in high orders since several terms of ( 1−xi) can be produced

with multiplying the constraints of Bus i and Bus j [35]. Hence, the resulted terms with

high orders will be treated as a first order term since this constraint has a zero right hand

side.

2.4.1.3 Power Flow Measurement Example

Suppose that the power flow measurements for the IEEE 14-bus system (Fig. 2.1) [38]

are on branches 2− 3, 3− 4, 6− 11, 6− 12, and 7− 8. Then constraints (2.6) and (2.7) are

formulated for MILP and NLP for lines with flow measurements. The observability functions

of buses 2, 3 , and 4 for the MILP are:

f2 = x1 + x2 + x3 + x4 + x5 ≥ 1, f3 = x2 + x3 + x4 ≥ 1,

f4 = x2 + x3 + x4 + x5 + x7 + x9 ≥ 1
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The joint constraint (2.6) is applied since there are power flows on branches 2− 3 and 3− 4:

fflow,2−3,3−4 = f2 + f3 + f4 ≥ 1

= x1 + 3x2 + 3x3 + 3x4 + 2x5 + x7 + x9 ≥ 1

Joint constraint fflow,2−3,3−4 means that only one of the buses 2, 3, and 4 must be

observable to make the other buses observable since the power flows are known. Hence, this

joint constraint meets the minimum requirement of installing at least a single PMU at one

of those buses or at the buses adjacent to them.

Likewise, the observability functions of buses 6, 11 , and 12 are:

f6 = x5 + x6 + x11 + x12 + x13 ≥ 1, f11 = x6 + x10 + x11 ≥ 1, f12 = x6 + x12 + x13 ≥ 1

Then the above three constraints are merged into a joint constraint as follows.

fflow,6−11,6−12 = x5 + 3x6 + x10 + 2x11 + 2x12 + 2x13 ≥ 1

The third joint constraint for Branch 7− 8 is obtained in a similar way as follows.

fflow,7−8 = x4 + 2x7 + 2x8 + x9 ≥ 1

For the nonlinear programming, the observability functions for buses 2, 3, and 4 are:

g2 = ( 1− x2)( 1− x1)( 1− x3)( 1− x4)( 1− x5) = 0,

g3 = ( 1− x3)( 1− x2)( 1− x4) = 0,

g4 = ( 1− x4)( 1− x2)( 1− x3)( 1− x5)( 1− x7)( 1− x9) = 0
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Joint constraint (2.7) is applied to the three observability functions due to the power flows

on branches 2− 3 and 3− 4:

gflow,2−3,3−4 = g2g3g4 = 0

= ( 1− x1)( 1− x2)( 1− x3)( 1− x4)( 1− x5)( 1− x7)( 1− x9) = 0

In a similar way, power flow joint constraints for branches 6− 11, 6− 12, and 7− 8 are

obtained as the following:

gflow,6−11,6−12 = g6g11g12 = ( 1− x5)( 1− x6)( 1− x10)( 1− x11)( 1− x12)( 1− x13) = 0

gflow,7−8 = g7g8 = ( 1− x4)( 1− x7)( 1− x8)( 1− x9) = 0

Table 2.2 shows the results of the OPP for power flow case. The number of PMUs in this

case is reduced due to the power flow meters. Table 2.3 presents the location of the power

flow measurement branches.

Table 2.2: Power flow measurements case results

IEEE Test Number of
Number of

Number of
System Flow Branches

PMUs
NLP Solutions

MILP NLP

14-bus 5 3 3 11
57-bus 40 6 6 5
118-bus 31 24 24 5
300-bus 43 81 81 4

2.4.2 Zero Injection Measurements

A four-bus system as illustrated in Fig. 2.2 is used to easily demonstrate the zero injection

case. To have each of the four buses observable, the following constraints should be satisfied

in the MILP and NLP formulations, respectively.
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Table 2.3: Branches of power flow measurements

IEEE Test
Branches of Flow Measurements

System

14-bus 2-3,3-4,6-11,7-8,6-12

57-bus 1-2,1-15,1-16,1-17,3-15,4-5,4-6,4-18,7-29,
29-52,8-9,9-10,10-12,10-51,12-13,51-50,
11-41,11-43,41-42,42-56,14-46,47-46,
19-20,20-21,22-38,38-37,38-44,38-48,
49-38,23-24,24-25,24-26,27-26,28-27,
30-31,32-34,34-35,36-35,40-36,53-54

118-bus 1-3,3-5,6-7,8-9,11-13,16-17,20-21,23-25,
23-32,32-114,27-28,34-43,35-36,41-42,
47-46,49-50,50-57,51-52,56-58,60-62,
65-68,68-116,71-73,76-77,77-82,82-83,

86-87,90-91,95-96,99-100,110-112

300-bus 1-3,3-4,6-7,8-11,11-13,15-16,21-22,24-25,
25-26,32-35,37-38,40-68,68-174,46-47,
50-51,55-56,70-71,77-84,84-86,95-103,

108-112,120-125,136-138,145-265,
156-157,160-166,166-167,173-198,
198-216,216-220,182-190,184-185,

200-202,208-209,88-235,64-239,2-248,
17-252,109-263,270-292,270-296,

269-288,294-300

i

j

l k

Figure 2.2: Four-bus system.
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MILP: fi ≥ 1, fj ≥ 1, fk ≥ 1, fl ≥ 1 (2.8)

NLP: gi = 0, gj = 0, gk = 0, gl = 0 (2.9)

Now assume that Bus ` has a zero injection measurement. The power injection and the

voltage phase angles of the four buses are related to each other as the following:

Pinj,l =
θl − θi
Xli

+
θl − θj
Xlj

+
θl − θk
Xlk

= 0 (2.10)

If the power injection and three of the phase angles are known, the fourth phase angle can

be measured. Therefore, three buses have to be observable to make the fourth one observable

with the help of the installed PMU and the zero injection at Bus `. This requirement is

formulated using the MILP as [7]:

finj,l = fi + fj + fk + fl ≥ 3 (2.11)

When one of the observability functions (fi, fj, fk, or fl) equals to zero, then the joint

constraint (2.11) meets the zero injection requirement. Nevertheless, this joint constraint

may result in two drawbacks. First, adding the observability functions can produce a re-

dundancy for certain buses which can make the constraint (2.11) satisfied with two zero

1 2 3 4

5

6

Figure 2.3: Six-bus system.
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observability functions [31]. A six-bus system (shown in Fig. 2.3) is employed to explain the

drawbacks of the constraint (2.11). Assume that Bus 2 has a zero injection measurement.

Three buses (1, 3, and 5) are adjacent to Bus 2. Thus, the MILP constraints for this system

will be as follows.

finj,2 = f1 + f2 + f3 + f5 ≥ 3

= 3x1 + 4x2 + 2x3 + x4 + 3x5 + 2x6 ≥ 3

f4 = x3 + x4 ≥ 1, f6 = x1 + x3 + x6 ≥ 1

From the above constraints, the OPP can be on buses 3 and 4 (i.e. f1 = 0, f2 = 1,

f3 = 2, f4 = 2, f5 = 0, and f6 = 1) which leaves buses 1 and 5 unobservable. Note that the

two buses 1 and 5 cannot be observable even with the help of zero injection measurement

since two out of four buses are unobservable. Therefore, the system complete observability

is not guaranteed in some configuration.

Recently, it has been clarified in [31] that fi cannot be guaranteed to be 0 or 1 which is

the main reason of this limitation. For example, fj and fk can be 2, while fi and fl can be 0

which satisfy (2.11). For that reason, the constraint (2.11) does not guarantee at least 3 out

of 4 buses are observable. Thus, the authors propose a formulation to keep the right hand

side equals to 1 which can solve the redundant observability of some buses. Then the joint

constraint (2.11) is reformulated as follows.

finj,l =

{
fi + fj ≥ 1, fi + fk ≥ 1, fi + fl ≥ 1, fj + fk ≥ 1, fj + fl ≥ 1, fk + fl ≥ 1

(2.12)

The observability constraint (2.12) guarantees complete observability since it can be

satisfied if at most one of the observability constraints (fi, fj, fk, or fl) is zero.
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Solving the same problem using (2.12), then the MILP constraints will be as the following:

finj,2 =

{
f1 + f2 ≥ 1, f1 + f3 ≥ 1, f1 + f5 ≥ 1, f2 + f3 ≥ 1, f2 + f5 ≥ 1, f3 + f5 ≥ 1

f4 = x3 + x4 ≥ 1

f6 = x1 + x3 + x6 ≥ 1

From the above constraints, the optimal PMU placement can be on buses 3 and 6 (i.e.

f1 = 1, f2 = 1, f3 = 2, f4 = 1, f5 = 0, and f6 = 2 ) which leaves Bus 5 unseen by the PMUs

but can be observable with the help of zero injection measurement at Bus 2.

In addition to the redundant observability, the joint constraint (2.11) cannot obtain the

optimum solution if there are two or more zero injections with mutual buses [31]. Assume

that there are zero injections at Bus 1 and Bus 3 in the six-bus system (shown in Fig. 2.3).

The adjacent buses to Bus 1 are buses 2, 5, and 6, while the adjacent buses to Bus 3 are

buses 2, 4, and 6. In this case, Bus 2 and Bus 6 are mutual buses, then MILP constraints

using (2.11) can as the following:

finj,1 = f1 + f2 + f5 + f6 ≥ 3

= 4x1 + 3x2 + 2x3 + 3x5 + 2x6 ≥ 3

finj,3 = f2 + f3 + f4 + f6 ≥ 3

= 2x1 + 2x2 + 4x3 + 2x4 + x5 + 2x6 ≥ 3

These constraints can be satisfied using at least two PMUs (e.g., placement at Bus 1

and Bus 3), while this problem can be satisfied using only one PMU at Bus 2. Note that

by placing a single PMU at Bus 2, Bus 4 and Bus 6 are unseen by the PMU but can be

observable with the zero injections at Bus 1 and Bus 3. Therefore, the optimal solution
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may not be provided using the joint constraint (2.11). This problem can be solved using

(2.12) with some modification [31]. Suppose that Bus 1 and Bus 3 have zero injections in

the six-bus system (Fig. 2.3). The MILP constraints using (2.12) will be as follows.

finj,1 =

{
f1 + f2 ≥ 1, f1 + f5 ≥ 1, f1 + f6 ≥ 1, f2 + f5 ≥ 1, f2 + f6 ≥ 1, f5 + f6 ≥ 1

finj,3 =

{
f2 + f3 ≥ 1, f2 + f4 ≥ 1, f2 + f6 ≥ 1, f3 + f4 ≥ 1, f3 + f6 ≥ 1, f4 + f6 ≥ 1

Then mutual observability functions in the left-hand side of finj,1 and finj,3 have to

be merged. In this chapter, the MILP formulation is improved by solving the optimality

limitation with less constraints as the following:

finj,1 and 3 =


f1 + f2 + f3 ≥ 1, f1 + f2 + f4 ≥ 1, f1 + f3 + f6 ≥ 1, f1 + f4 + f6 ≥ 1,

f2 + f3 + f5 ≥ 1, f2 + f4 + f5 ≥ 1, f3 + f5 + f6 ≥ 1, f4 + f5 + f6 ≥ 1,

f1 + f5 ≥ 1, f3 + f4 ≥ 1, f2 + f6 ≥ 1

These constraints can obtain the OPP by placing a single PMU at Bus 2 after merging

the mutual observability functions. With zero injections at Bus 1 and Bus 3, observability

can be assured for Bus 4 and Bus 6. The number of constraints in [31] to solve the six-bus

system is 16 compared to 11 in this chapter. This reduction in the number of the constraints

is significant for solving large systems.

For the NLP formulation, the equivalent has not been addressed adequately. The zero

injection joint constraint for NLP in [35] is not equivalent to (2.11) or (2.12). It indicates

that the zero injection bus and its adjacent buses are observable if one of them is observable.

As a consequence, this constraint can result in unobservable buses. In this section, the

equivalent in nonlinear programming formulation is proposed.
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Once Bus ` has a zero injection measurement (Fig. 2.2), for this particular case, then

we need at least any 3 buses among all 4 buses to be observable to guarantee a complete

observability.

That is, the following six constraints should be satisfied.

ginj,l =

{
gigj = 0, gigk = 0, gigl = 0, gjgk = 0, gjgl = 0, gkgl = 0 (2.13)

Suppose that Bus 2 has a zero injection in the six-bus system (shown in Fig. 2.3). Buses

1, 3, and 5 are adjacent buses to Bus 2. The NLP constraints will be as follows.

ginj,2 =

{
g1g2 = 0, g1g3 = 0, g1g5 = 0, g2g3 = 0, g2g5 = 0, g3g5 = 0

g4 = (1− x3)(1− x4) = 0

g6 = (1− x1)(1− x3)(1− x6) = 0

Then an optimal solution can be achieved by installing PMUs on Bus 3 and Bus 6 (i.e.

g1 = 0, g2 = 0, g3 = 0, g4 = 0, g5 = 1, and g6 = 0 ) which makes Bus 5 cannot be seen by

the PMUs but can be observable with the help of Bus 2 zero injection measurement.

Then suppose that Bus 1 and Bus 3 have zero injections in the same aforementioned

system. The NLP constraints with the mutual buses will be as follows.

ginj,1 and 3 =


g1g2g3 = 0, g1g2g4 = 0, g1g3g6 = 0, g1g4g6 = 0,

g2g3g5 = 0, g2g4g5 = 0, g3g5g6 = 0, g4g5g6 = 0,

g1g5 = 0, g3g4 = 0, g2g6 = 0

From these constraints, the optimal PMU placement can be at Bus 2. Note that buses 4

and 6 are observable with the zero injection measurements at buses 1 and 3.
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Thus, both MILP and NLP joint constraints for zero injection measurements can be

satisfied if at most one of the observability constraints (zero injection bus or its adjacent

buses constraints) is zero. Also, these joint constraints guarantee complete observability

and optimal solution to the problem. Table 2.4 and Table 2.5 show the location of the zero

injections and the results of the zero injection case for MILP and NLP, respectively.

Table 2.4: Zero injection measurement locations

IEEE Test
Zero Injection Measurement Buses

System

14-bus 7
57-bus 4,7,11,21,22,24,26,34,36,37,39,40,45,46,48
118-bus 5,9,30,37,38,63,64,68,71,81
300-bus 17,58,233,256,294

Table 2.5: Zero injection case results

IEEE Test Number of
Number of

Number of
System Zero Injections

PMUs
NLP Solutions

MILP NLP

14-bus 1 3 3 1
57-bus 15 11 11 6
118-bus 10 28 28 4
300-bus 5 82 82 2

2.4.3 Limited Communication Facility

PMUs need to communicate with the control center through data links at the substa-

tions to provide the measurements of synchronized voltage and current phasors. Therefore,

a substation with limited communication facility can obstruct the PMU placement. With

restricted communication problem, the PMU placement cost will be increased [39]. Hence,

the placement cost wi for MILP and NLP will be increased for any bus with limited commu-

nications. As a result, this high placement cost can omit the limited communication buses
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from the optimal solution [35]. Suppose that Bus 2 and Bus 9 have limited communication

facilities on the IEEE 14-bus system (shown in Fig. 2.1) [38]. Then the placement costs of

Bus 2 and Bus 9 are increased to be wi = 109. Table 2.6 shows the results of the limited

communication facility case.

Table 2.6: Limited communication facility case results

IEEE Test Limited
Number of

Number of
System Communication Buses

PMUs
NLP Solutions

MILP NLP

14-bus 2,9 5 5 11
57-bus 1,4,9,15 17 17 10
118-bus 2,9,11,12,17 35 35 8
300-bus 2,9,11,64,111, 277,299,300 92 92 4

2.4.4 Single PMU Failure

Even though the PMUs have a high reliability, there is a chance of a single PMU failure.

To assure the complete observability of the system, main and backup sets are obtained. The

optimal PMU solution without taking the PMU failure into account is the main set, whereas

the backup set is generated in case of a PMU failure. The right hand side of the MILP

constraints can be modified to be two to let each bus observed by two PMUs [22]. Instead,

the main set terms xi and xj of the MILP constraints can be removed to generate the backup

set. Likewise, the main set terms ( 1−xi) and ( 1−xj) of the NLP constraints are removed

to provide the backup set [35]. Therefore, the buses in the main set will not be selected

again, and the backup set will assure the complete observability of the system when a one

PMU fails.

IEEE 14-bus system (Fig. 2.1) main set is obtained as in Section 2.2 and Section 2.3, and

then MILP and NLP main set can be the following: {2, 8, 10, 13}. Therefore, all of the terms

x2, x8, x10, and x13 of MILP constraints are ignored to generate the backup set. Similarly,
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all of the terms ( 1− x2) , ( 1− x8) , ( 1− x10) , and ( 1− x13) are removed from the NLP

constraints.

After solving the problem, the resulted backup set for the MILP is {1, 4, 6, 7, 9}, whereas

the backup sets for the NLP formulation are {1, 4, 6, 7, 9}, {1, 3, 6, 7, 9}, {3, 5, 6, 7, 9}, or

{4, 5, 6, 7, 9}. From Table 2.7, we can see that the single PMU failure case would double the

total minimum number of PMUs due to the backup set.

Table 2.7: Single PMU failure results

IEEE Test
Number of

Number of
System

PMUs
NLP Solutions

MILP NLP

14-bus 9 9 4
57-bus 35 35 4
118-bus 75 75 2
300-bus 221 221 2

2.4.5 Limited PMU Channel Capacity

The OPP has been solved supposing that all PMUs have enough channels to make all

adjacent buses observable. In reality, PMUs are made to have a different number of channels

with different prices [25]. In this section, the OPP is analyzed in case that we have PMUs

with limited channel capacity.

Let’s assume that the number of adjacent buses to Bus i (mi) is larger than the PMU

channel capacity (c). The number of line combinations (Cc
mi

) is given as follows [35,36].

Cc
mi

=
mi!

c! (mi − c)!
(2.14)

Then the observability constraints are changed for both MILP and NLP to meet the

possible line combinations. Note that if the number of adjacent buses to Bus i is less than
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or equal to the number of channel capacity, the observability constraint of Bus i is kept the

same.

Let’s assume that we have PMUs with limited channel capacity where c = 3 for the

14-bus system (Fig. 2.1). Then the observability constraints are changed as follows.

• At Bus 1:

The adjacent buses are 2 and 5 which means that m1 = 2 and c > m1. Thus, we have

enough channels for this bus, and the constraints f1 and g1 are kept the same.

• At Bus 2:

The adjacent buses are 1, 3, 4, and 5 which means that m2 = 4 and c < m2. Thus, the

number of line combinations is 4, and they are {2− 1, 2− 3, 2− 4}, {2− 1, 2− 3, 2−

5}, {2 − 1, 2 − 4, 2 − 5}, and {2 − 3, 2 − 4, 2 − 5}. Then the observability constraint

for Bus 2 is changed as follows.

• For MILP:

f2,1 = x2 + x1 + x3 + x4 ≥ 1, f2,2 = x2 + x1 + x3 + x5 ≥ 1

f2,3 = x2 + x1 + x4 + x5 ≥ 1, f2,4 = x2 + x3 + x4 + x5 ≥ 1

• For NLP:

g2,1 = ( 1− x2)( 1− x1)( 1− x3)( 1− x4) = 0,

g2,2 = ( 1− x2)( 1− x1)( 1− x3)( 1− x5) = 0,

g2,3 = ( 1− x2)( 1− x1)( 1− x4)( 1− x5) = 0,

g2,4 = ( 1− x2)( 1− x3)( 1− x4)( 1− x5) = 0

Then the process is repeated for the rest of buses to make sure that each constraint has

only three adjacent buses. Table 2.8 shows the limited channel capacity case results.
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Table 2.8: Limited channel capacity case results

IEEE Test Number of
Number of

Number of
System Channels

PMUs
NLP Solutions

MILP NLP

14-bus 3 4 4 1
57-bus 4 17 17 4
118-bus 6 32 32 3
300-bus 7 87 87 3

2.4.6 Remarks on OPP Problem Simulation Results

MILP and NLP comparison is conducted using different IEEE test case systems. Five case

studies, which are Power flows, zero injections, limited communications, PMU failure, and

limited PMU channels, are formulated using MILP and NLP approaches. A new formulation

for zero injection using NLP is presented and examined. MATLAB’s intlinprog function is

used to solve the MILP, while NLP is solved by MATLAB’s fmincon function with SQP

solver. The initial values are chosen as random numbers in the feasible region. In a large-

scale system, the initial values should be designed carefully to make the NLP converge to

the minimum point. The total number of the initial values should not exceed 45% of total

number of buses. Then some of the initial values can be designed with different random

numbers to achieve several solutions. The nonlinear constraints tolerance can be varied from

10−4 to 10−12 to get the least number of PMUs. From Table 2.1, we can see that NLP obtains

the least number of PMUs as same as MILP. NLP can also provide several solutions to the

OPP problem. One of the NLP optimal sets matches the MILP solution. On the other hand,

the computational time of the MILP is less than the NLP. Table 2.9 presents the average

CPU time for both MILP and NLP on different IEEE systems. From Table 2.2 and Table

2.5, it can be seen that the number of PMUs in both methods is reduced to be less than

the general case because of the power flow measurements and zero injection measurements,

respectively. On the contrary, more PMUs are resulted in the restricted communication
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and PMU failure cases as shown in Table 2.6 and Table 2.7. A backup set is generated for

the single PMU failure case which would increase the PMU installation cost. It should be

noted that the number of PMUs would be reduced if power flows and zero injections are

considered in this case. To validate the effectiveness of the NLP zero injection formulation,

Table 2.9: MILP and NLP CPU time comparison

Case IEEE Test System
CPU Time (s)

MILP NLP

None

14-bus 0.0313 0.1563
57-bus 0.0469 0.9375
118-bus 0.0781 9.9063
300-bus 0.0938 49.7656

Power Flow Measurements

14-bus 0.0313 0.0781
57-bus 0.0469 0.4844
118-bus 0.0625 6.7500
300-bus 0.0938 43.3750

Zero Injection Measurements

14-bus 0.0313 0.0938
57-bus 0.0469 0.8423
118-bus 0.0781 6.7969
300-bus 0.1094 43.2344

Limited Communication Facility

14-bus 0.0313 0.0781
57-bus 0.0469 0.6406
118-bus 0.0625 6.3906
300-bus 0.0938 44.5469

Single PMU Failure

14-bus 0.0313 0.0781
57-bus 0.0469 0.8438
118-bus 0.0625 6.7969
300-bus 0.0938 45.4063

Limited Channel Capacity

14-bus 0.0313 0.0938
57-bus 0.0469 13.2188
118-bus 0.0781 25.6875
300-bus 0.1250 64.5313
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a comparison of several algorithms results for zero injection case is shown in Table 2.10. For

further analysis, the proposed zero injection formulations for MILP and NLP are evaluated

on a large 2383-bus Polish system provided by MATPOWER [40] as can be seen from Table

2.11. Therefore, MILP and NLP approaches are effective to work out the OPP problem, and

they can provide the same results.

Table 2.10: Comparison results of zero injection using different methods

Method
IEEE Test System

14-bus 57-bus 118-bus

ILP [2] 3 12 29
TS [16] 3 13 -
GA [14] 3 12 29
NSG [15] - - 29
PSO [17] 3 11 28
ILP [23] 3 13 29
SA [11] 3 11 -
ILP [22] 3 14 29
ILP [29] 3 11 28
ILP [31] 3 11 28
NLP [35] 3 13 29
Proposed MILP 3 11 28
Proposed NLP 3 11 28

Table 2.11: OPP results for a large 2383-bus Polish system

Case Bus
Number of

Number of
CPU

Location
PMUs

NLP Solutions
Time (s)

MILP NLP MILP NLP

None — 746 746 8 0.9531 2.1607×103

Zero Injection 43,220,1185,1486 740 740 7 1.0156 2.1393×103

Measurements 1871,2054,2086,
2196,2259,2285
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2.5 Conclusion

Power grid observability modeling to tackle the OPP problem is presented using two ap-

proaches. MILP and NLP formulations for the OPP problem are demonstrated for complete

observability. Nonlinear programming has an advantage of providing several optimal solu-

tions compared to the MILP method. However, mixed integer linear programming has less

CPU time compared to the nonlinear programming. MILP zero injection formulation is en-

hanced to solve the redundancy and optimality limitations. A new zero injection formulation

for nonlinear programming is developed. Power flows, zero injections, limited communica-

tion facilities, PMU failure, and limited channel capacity case studies are demonstrated for

the two methods. MILP and NLP advantages and disadvantages are discussed.
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Chapter 3: PMU Measurements for Oscillation Monitoring: Connecting Prony

Analysis with Observability

3.1 Introduction

Phasor measurement units (PMUs) installation can take several years to provide complete

observability of the power grid. With the minimization techniques (e.g., MILP or NLP), the

optimal PMU placement (Chapter 2) can be achieved. PMUs can be installed to the third

or fifth of the system buses to ensure complete observability. In reality, power system can

have a large amount of buses as the U.S. eastern interconnection which has around 70,000

buses. In this case, 14,000 to 24,000 PMUs are needed to make the system fully observable.

According to the U.S. Department of Energy, the overall cost of PMU installation (including

equipment, labor, communication, and security) is ranged from $40,000 to $180,000 [6].

Therefore, installing PMUs to make the system entirely observable is planned with stages

and can take several years. Only 2500 PMUs are installed in the North American power grid

(U.S. Department of Energy, 2018). In this chapter 2, PMU measurements for oscillation

monitoring are studied to provide the most observable bus which can better reflect the inter-

area oscillation using Prony analysis. When a PMU is placed on the observable bus, the

power system security is enhanced and the inter-area oscillation can be easily detected.

Phasor measurement units (PMUs) have been put into power grid for real-time moni-

toring. Using PMU data to identify electromechanical oscillations has been studied in the

literature and an IEEE PES taskforce report [8] has been published in 2012. For ringdown

2This chapter was accepted for publication in IEEE Power and Energy Society General Meeting [41],
2019.
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signals, or measurements captured for a transient event, Prony analysis and Eigensystem

Realization Algorithm (ERA) are two measurement-based identification methods [9]. More

specifically, Prony analysis has been introduced in power system oscillation mode estima-

tion in 1980s by J. Hauer [42]. As an extension, Prony analysis based on multiple channel

data was presented in [43]. In [44], multiple channel Prony analysis was formulated as a

weighted least squares estimation problem with the weights obtained from single-channel

Prony analysis. The estimation accuracy shows significant improvement.

Prony analysis accuracy also depends on the specification of system model order and

sampling rate. Experiments have been conducted on Prony analysis to show the influence

of model order and sampling rate on oscillation estimation accuracy [45]. The remarks on

sampling rate influence on experiments in [45] are corroborated based on the analysis carried

out in [46].

The objective of this chapter is to examine estimation accuracy of Prony analysis and

relate the indicator of accuracy to the physical system dynamic analysis.

Prony analysis is essentially to solve a least squares estimation (LSE) problem notated

as Ha = Y where H is the Hankel matrix built upon measurements, Y is the measurement

vector, and a is the parameter vector to be found. Since the solution of the overdetermined

problem â is determined by the normal equation: â = (HTH)−1HTY , a larger conditional

number of HTH (the ratio of the maximal singular value versus the minimum) indicates a

worse estimation accuracy. In ERA, singular value decomposition (SVD) of Hankel matrices

will be conducted to construct dynamic system matrices. The above information indicates

that singular values of Hankel matrices can give indication regarding estimation accuracy.

A paper in 2013, indeed relies on SVD of Hankel matrices to judge PMU placement for

dynamic stability assessment [47].

To investigate how singular values of a Hankel matrix relate to a physical system model,

dynamic modeled-based observability is used to rank measurements generated from a known
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system model. The rank based on the observability will be shown to match the rank based

on Hankel matrix singular values.

To this end, it is clear that the singular values of a Hankel matrix reflect signal observabil-

ity of oscillation modes and hence they provide reasonable indication of estimation accuracy.

Built upon this knowledge, the sensitivity of system model order assumption and noise level

on estimation accuracy using the singular value plots is further studied.

The rest of the chapter is organized as follows. Section 3.2 gives a brief introduction on

Prony analysis. Section 3.3 presents modal decomposition-based observability computation.

Section 3.4 presents test case results using the two approaches: observability computing

based on a known dynamic model and measurement-based Hankel matrix singular value

computation. Section 3.5 concludes the chapter.

3.2 Prony Analysis

3.2.1 Prony Analysis Principle

Consider a Linear-Time Invariant (LTI) system with the initial state of x(0) = x0, where

x ∈ Rn is the stator variable column vector. The dynamic model can be expressed as the

follows.

ẋ(t) = Ax(t) (3.1)

y(t) = Cx(t) (3.2)

where y ∈ R is a scalar output, A ∈ Rn×n and C ∈ R1×n are system dynamic and mea-

surement matrices. The order of the system is n if A is full rank. Notation λi, pi, and qi

represent the i-th eigenvalue, the corresponding right eigenvector, and the left eigenvector
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of A respectively. The scalar output y can be represented as:

y(t) =
n∑
i=1

C(qTi x0)pi︸ ︷︷ ︸
Ri

eλit, (3.3)

where Ri is named as a residual.

The observed or measured y(t) consists of N + 1 samples which are equally spaced by

∆t. The samples are notated as yk = y(tk), k = 1, · · · , N . kth sample yk can be written in

the exponential form as:

yk = y(tk) =
n∑
i=1

Riz
k
i , k = 0, · · · , N, (3.4)

where zi = eλi∆t, and zi is the ith eigenvalue of the system in discrete time domain.

z1, z2, · · · zn are the roots of the n-th characteristic polynomial function of the system:

zn − (a1z
n−1 + a2z

n−2 + ...+ anz
0) = 0. (3.5)

While the roots may be complex numbers, the system polynomial coefficients ai are real

numbers.

From (3.5), the linear prediction model can be obtained.

zn = a1z
n−1 + a2z

n−2 + ...+ anz
0 (3.6)

⇒yn = a1yn−1 + a2yn−2 + ...+ any0 (3.7)
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A vector of the signal samples from step n to step N can be expressed as an overdeter-

mined problem or LSE problem (3.8).



yn

yn+1

...

yN


︸ ︷︷ ︸

Y

=



yn−1 yn−2 · · · y0

yn yn−1 · · · y1

...
...

. . .
...

yN−1 yN · · · yN−n


︸ ︷︷ ︸

H



a1

a2

...

an


︸ ︷︷ ︸

a

(3.8)

H is a Hankel matrix of (N + 1 − n) × n dimension. The best estimate of a is found from

the following normal equation.

â = H†Y (3.9)

where H† notates the Moore-Penrose pseudoinverse of H and H† = (HTH)−1HT . The

eigenvalues of the discrete system zi can be found by seeking the roots of the polynomial

(3.5). The eigenvalues of the continuous system λi can be found as log zi
∆t

.

To find the residuals Ri, we examine (3.4). Eq. (3.4) can be expressed as another LSE,

shown in (3.10).



z0
1 z0

2 · · · z0
n

z1
1 z1

2 · · · z1
n

...
...

...
...

zN1 zN2 · · · zNn





R1

R2

...

Rn


=



y0

y1

...

yN


(3.10)

Solving (3.10) leads to the estimation of Ri. With this information, the signal can be

reconstructed using (3.4).
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3.2.2 Singular Value Decomposition of the Prony Analysis H Matrix

The SVD of the H matrix of the Prony analysis is the factorization of this matrix into

the product of three matrices, and can be expressed as follows.

H = UΣV ∗ (3.11)

where the dimension of H is (N − n + 1) × n, U is (N − n + 1) × (N − n + 1) matrix, Σ

is (N − n + 1) × n diagonal matrix of positive real singular values of matrix H, and V ∗ is

the conjugate transpose of V which is n× n matrix. U and V are unitary matrices, and the

diagonal matrix Σ is given by the follows.

Σ =

Σ1

0

 , n ≤ (N − n+ 1) (3.12)

where Σ1 is the diagonal of {σ1, σ2, · · · , σn}, and note that σ1 ≥ σ2 ≥ · · · ≥ σn.

3.3 Modal Decomposition and Observability of Modes

The system matrix A has the following characteristic related to an eigenvalue λi:

Avi = λivi (3.13)

where vi is right eigenvector associated with λi. Then (3.13) can be represented as the

following:

A

[
v1, v2, . . . , vn

]
︸ ︷︷ ︸

V

=

[
λ1v1 λ2v2 . . . λnvn

]
= V Λ (3.14)
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where V is the right eigenvector matrix and Λ = diag{λ1, · · · , λn}. We may further find:

Λ = V −1AV (3.15)

A = V ΛV −1. (3.16)

The dynamic model can be expressed by the following:

ẋ(t) = V ΛV −1x(t) (3.17)

Define x̃ = V −1x (or x = V x̃), then the dynamic system represented by X̃ is as follows.

˙̃x(t) = Λx̃(t), Or:

˙̃xi(t) = λix̃i(t)

(3.18)

The time domain expression of every element of the new state vector x̃ can be found

independently with the i-th eigenvalue:

x̃i(t) = eλitx̃i(0) (3.19)

The output of the system will be expressed as the following:

y(t) = CV x̃(t) = CV


x̃1(0)eλ1t

...

x̃n(t)eλnt

 =
n∑
i=1

Ωix̃i(0)eλit (3.20)

where Ω = CV is the observability row vector corresponding to each eigenvalue.

From the output or measurement expression y(t), it can be seen that for the same ini-

tial condition notated by x(0) and further x̃(0), different measurements will have different
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observability of each eigenvalue. Thus, Ω will be computed for measurements and |Ωi| will

be used to rank the measurements based on their observability to the i-th eigenvalue.

3.4 Case Studies

The two approaches for measurement ranking will be applied to two systems: the 2-area 4-

machine case and the 16-machine 68-bus system. The measurement data are generated using

the power system toolbox (PST) [48]. PST also has the capability to conduct small-signal

perturbation and give the linear system matrices. The observability vectors are computed

based on the system matrices obtained. Though MATLAB’s signal processing toolbox has a

Prony analysis function that can give a discrete system transfer function from a given time-

series signal, it does not provide the intermediate information regarding Hankel matrix. As

such, a Prony analysis toolbox developed for [44, 49] is utilized to conduct Prony analysis,

including least squares estimation to find coefficient vector a, eigenvalue computing, and

signal reconstruction.

3.4.1 Two-Area Four-Machine System

The classic two-area four machine system for inter-area oscillation study (shown in Fig.

3.1) is used for the first case study. The four generators are assumed to have a second-order

swing dynamics each. Twenty seconds simulation is conducted for a short-circuit transient

event. The measurements are resampled to have equal time steps.

3.4.1.1 Comparison of Different Signals

The sampling rate is chosen to be 0.03 s. Three voltage signals for three different buses

(buses 1, 13, and 101) are selected. Research in [50] has a given detailed analysis on interarea

oscillation observability for buses on a radial path. It is found that the bus located in the

middle of the path is shown to have the best observability. In turn, Bus 101 is expected to
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Figure 3.1: The two-area four machine test case in PST.

Table 3.1: The observability approach of buses 1, 13, and 101 with damping ratio and
frequency of the 13-bus system

Mode
Observability

Damping Ratio Frequency (Hz)
Bus 1 Bus 13 Bus 101

1 0.04 0.02 0.11 0.00 0.56
2 0.05 0.04 0.04 -0.00 1.20
3 0.03 0.05 0.06 0.00 1.21

have the largest absolute value for its observability corresponding to the inter-area oscillation

mode.

This is confirmed by the observability analysis conducted base on the linear system

matrices. The observability along with the damping ratio, and frequency of the system

modes are also presented in Table 3.1. In this system, three oscillation modes are identified

and shown in Table 3.1: 0.56 Hz inter-area oscillation mode and two local oscillation modes

at 1.20 Hz and 1.21 Hz. We can see clearly that Bus 101 has a larger observability on the

0.56 Hz mode than the other two buses.

It is known that the angle difference between the buses located in two areas should better

reflect inter-area oscillations compared to the angle difference between two buses located in

the same area. In addition to the three voltage signals, three angle difference signals are also
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selected: θ2 − θ1, θ11 − θ1, and θ11 − θ12. Since PST does not give the measurement matrix

on the bus angles, the observability for angle differences is omitted.
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Figure 3.2: Singular values for the Hankel matrices related to the six signals. The system
order is 220.

The Hankel matrices H of the six selected signals are built based on the simulation data.

Fig. 3.2 shows the singular values of the H matrices of the three voltage signals and the three

angle signals. It can be clearly seen that the singular values related to Bus 101 (in the middle

of the path) and the angle difference of buses in two areas (θ11− θ1) have singular values on

the top. On the other hand, angle difference for two buses located in one area (θ11−θ12) is on

the bottom of the chart. The singular value plots confirm that Bus 101’s voltage magnitude

and the angle between two areas have the best observability of interarea oscillation mode.

Fig. 3.3 presents the reconstructed signals against the original measurements (thin blue

lines).

3.4.1.2 Comparison of Model Order Assumption

For the angle difference signal (θ11 − θ12) related to two buses in Area 2, Prony analysis

with different model order assumptions are carried out. The model order is assumed to be

50, 120 and 220, respectively. The singular value plots of the corresponding Hankel matrices

are shown in Fig. 3.4.
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Figure 3.3: Comparison of the reconstructed signals against the original measurements
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Figure 3.4: Singular values for the Hankel matrices related to three orders: 50, 120 and 220.

The singular value plots clearly show that high-order results in better estimation accuracy.

This point has been recognized generally (see [51] Chapter 10). The reconstructed signals

are presented in Fig. 3.5. It can be seen that high order assumption results in better match

between the reconstructed signal and the original signal.
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Figure 3.5: Comparison of the reconstructed signals against the original measurements for
different model order assumptions. Blue lines are the original measurements while the red

lines are the reconstructed signals.
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Figure 3.6: 16-machine, 68-bus test case.

3.4.2 16-Machine 68-Bus System

A larger power system, which is the 16-machine, 68-bus system, is used to further validate

that both of the observability calculation and Prony analysis singular value examination

lead to the same findings. This system is a reduced model of the New England Test System
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(NETS)-New York Power System (NYPS) interconnected system [52] and has five areas.

NETS is represented by area 4 which has generators G1 to G9, while NYPS is represented

by area 5 which has generators G10 to G13 as shown in Fig. 3.6 [52]. The other three areas

have equivalent generators G14 to G16.

Three voltage signals in different areas are chosen: Bus 5, Bus 29, and Bus 67. Their

observability related to four modes with lowest frequencies are computed and the results are

shown in Fig. 3.7. From this figure, it can be seen that Bus 29 is more observable compared

to Bus 5 and Bus 67 for the four modes. Among the four modes, modes 1 and 3 are identified

as inter-area oscillation modes, with their mode shape and participation factors shown in

Fig. 3.8.
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Figure 3.7: Observability of different buses. (a)Four low-frequency modes. (b)Buses 5, 29,
and 67 observability of the four indicated modes.

The simulation data generated by PST is used for Prony analysis. The system order is

set to be n = 150, and the sampling rate is defined to be 0.03 s. The singular values of the

Hankel matrix H of buses 5, 29, and 67 are shown in Fig. 3.9. The singular value plots show

that Bus 29 will result in best estimation accuracy. This finding corroborates with that from

the observability shown in Fig. 3.7.

The reconstructed signals are presented in Fig. 3.10. It can be seen that the match of

Bus 29 is better compared to that of Bus 5.
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Figure 3.8: Oscillation modes 1 and 3 participation factor of the 68-bus system.
(a)Compass plot of rotor speed of mode 1 and (b)mode 3. (c)Real part of speed

participation factor of mode 1 and (d)mode 3.
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Figure 3.9: Singular values of the Hankel matrix corresponding to bus voltage
measurement at 5, 29, and 67.
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Figure 3.10: Comparison of the reconstructed signals against the original measurements.
Blue lines are the original measurements.

3.4.2.1 Sensitivity Analysis of Noise Level

Bus 29’s voltage measurement is polluted with uniformly distributed random noise. The

singular value plots are generated (shown in Fig. 3.11) for the measurement with noise at

signal noise ratio (SNR) of 80 dB, 40 dB, and 20 dB. Note that PMU data usually has a

SNR at 40 dB [53]. It can be clearly seen that large noise leads to inaccurate estimation.
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Figure 3.11: Singular values of the Hankel matrix for different noise levels.
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3.5 Conclusion

This chapter demonstrates that the singular values of the Hankel matrix built for Prony

analysis or ERA can serve as an indicator for estimation accuracy. Signals with large observ-

ability also show large singular values. In addition, influence of model order and noise level

can also be demonstrated by the singular values. Two test cases, which are the two-area

four-machine and the 16-machine 68-bus systems, are used to illustrated the relationship

between singular values and dominant oscillation mode observability.
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Chapter 4: Measurement-Based Eigenvalue Identification Using Prony

Analysis, Matrix Pencil and Eigensystem Realization Algorithm

4.1 Introduction

In addition to rank the PMU measurements for oscillation monitoring, the PMU data can

play an important role to detect the inter-area oscillation modes. Conventionally, the oscilla-

tion modes in power system are analyzed with offline modal analysis method. Therefore, the

eigenvalues are identified with a linearized differential algebraic equation (DAE) model with

a specific equivalent point [54]. In other words, the results will be related to that equivalent

point. In reality, the operating conditions of the system are changing frequently. The real

power system cannot be predicted accurately, and offline modal analysis would not help to

detect the inter-area modes. Hence, measurement based-methods with PMU data are inves-

tigated in this chapter 3 to provide a real time monitoring and oscillation detection with the

current state of the power system. Wide Area Measurement System (WAMS) is responsible

to collect the synchronized measurements from PMUs with time tags from GPS. Then the

PMU data are sent to the Phasor Data Concentrator (PDC). Oscillation Monitoring System

(OMS) is built to the PDCs to detect the oscillation modes with the measurement-based

algorithms [56]. Based on the eigenvalue analysis, the frequency and the damping ratio can

be identified. Inter-area oscillation mode can be observed with low frequencies at 0.1 to 1

Hz, and the associated damping ratio range is between 0 and 17% in most cases.

Using measurement data, e.g., synchrophasors from Phasor Measurement Units (PMUs),

to find out system dynamic information is of practical interest [53]. The measurement data

3This chapter was submitted to International Transactions on Electrical Energy Systems [55], 2019.
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are classified into three categories which are ambient, probing, and ringdown. Ambient data

are related the variation of generators and loads at a fixed operating condition. Probing

data are the study of injected low-level pseudo-random noise to test the system performance.

Ringdown data occur when a large disturbance is observed in the system. For probing and

ambient data, several techniques have been studied in the literature. Autoregressive model

(AR), autoregressive moving average model (ARMA), and autoregressive moving average

exogenous (ARMAX) with a recursive least square (RLS) are presented in [57–59]. With

RLS, some of those methods can be applied to ringdown data. However, their computation

time is significant in case of a large power system and they are sensitive to the model order [8].

Consequently, the inter-area oscillation cannot be accurately identified since different model

orders affect the accuracy of the modes detection.

In addition, mode-meter analysis method for ambient data using Yule-Walker (YW)

algorithm is introduced in [60]. Performance of three different mode-meter algorithms based

on YW and subspace system identification is presented in [61]. Those methods can be applied

only to ambient data. Nevertheless, complex analysis is needed for large power systems, and

accurate estimation cannot be achieved with very noisy signals [61]. Nonlinear and non-

stationary analysis using Hilbert spectral analysis (HSA) is presented in [62, 63]. However,

this algorithm cannot provide an accurate estimation of two separated modes when frequency

or damping ratio difference is small [64].

Moreover, Prony analysis, Matrix Pencil (MP), and Eigensystem Realization Algorithm

(ERA) are the three major linear system identification methods for ringdown signals cap-

tured for transient events [8]. As mentioned in Chapter 3, Prony analysis was introduced to

the power system oscillation mode estimation by J. Hauer [42]. As an extension, Prony anal-

ysis based on multiple channel data was presented in [43]. In [44], multiple channel Prony

analysis was formulated as a weighted least squares estimation problem with the weights ob-

tained from single-channel Prony analysis. Prony analysis has been shown to have difficulty
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extracting modes with reduced-order model. Eigensystem Realization Algorithm (ERA)

for parameter identification and model reduction of dynamical systems was introduced in

1985 [65] relying on system realization theory introduced by Gilbert [66] and Kalman [67].

Applying ERA in power systems to find low-order models from time-domain simulation data

has been investigated in [9]. However, ERA approach may not provide an accurate signal

reconstruction with low orders. Further, using MP to estimate dynamic system eigenvalues

for an electromagnetic transient response was presented in [68,69]. This method was applied

to the power systems in 2005 to estimate dominant oscillation modes from Western Electric-

ity Coordinating Council (WECC) frequency responses of 6 seconds [70]. In [71], MP and

Prony analysis are compared for their capabilities of modal extraction of noisy power system

signals. MP has been proven to be more capable of mode extraction than Prony analysis.

In this chapter, the identification of the system dynamic information using PMU data

is investigated. Based on the literature, methods such as AR, ARMA, ARMAX, YW, and

Prony analysis to identify the inter-area oscillation modes are either sensitive to model orders

or noise signals. An alternative approach is to directly identify a reduced-order model based

on measurements. With real-world PMU measurements more accessible, this approach will

generate high practical interest. MP and ERA methods can identify the dynamic model

based on a reduced order model assumption. Those two methods are studied and the key

technique of noise resiliency and model order insensitivity as singular value decomposition

(SVD)-based rank reduction is identified. A reduced-order Prony analysis method through

Hankel matrix rank reduction is proposed in this chapter. The new Prony analysis can

accurately identify system eigenvalues from noisy signals. This proposed Prony method

has an excellent performance with different model orders. In addition, an improved ERA

method based on SVD rank reduction technique is presented. The proposed ERA can handle

multiple signals and provide accurate eigenvalues of the reduced-order model compared to

similar methods in the literature.
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All three methods (Prony analysis, MP, and ERA) form Hankel matrices from measure-

ment data. In Prony analysis, a single Hankel matrix is formed, where eigenvalues are found

by identifying the real coefficients from the polynomial characteristic equation through least

square estimation (LSE). In MP and ERA, shifted Hankel matrices are formed in respective

approach and the relation between the two matrices are explored. In MP, the two matrices

are related with system eigenvalues and a generalized eigenvalue problem is formed [65].

In ERA, the two shifted Hankel matrices are related with system matrix A to find the

eigenvalues.

While the 2012 IEEE PES taskforce report [8] offers a great guideline on the three

methods, a thorough examination on their principles, multiple data handling, noise resilient

techniques, and applications in large-scale power grid dynamics and real-world oscillation

events is of great importance. This chapter achieves the aforementioned goals and the

contribution is three-fold.

• First, this chapter has shed insight on the three major methods for eigenvalue identifi-

cation applied to the power systems and identified the key technique of noise resilience

as singular value decomposition (SVD)-based rank reduction. SVD-based rank reduc-

tion technique has been implemented in MP and achieved system order reduction and

noise resilience [69, 72]. This technique is implemented in ERA for one of the Hankel

matrices [8]. In this chapter, the rank reduction technique is further implemented on

the second Hankel matrix of ERA to achieve a superior performance.

• Second, Prony analysis method to achieve reduced-order system eigenvalue identifica-

tion and noise resilience is innovated. Prony analysis is known to be sensitive to system

order assumptions. If the system order is assumed to be low, the reconstructed signal

based on the identified eigenvalues poorly matches the original signal, especially for

noisy signals. In this chapter, two techniques are employed, namely, Hankel matrix
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rank reduction and eigenvalue reduction. The reduced-order Prony analysis method

gives comparable performance as MP and ERA.

• Third, two case studies, including an RLC circuit example and a large-scale power

grid oscillation example, clearly demonstrate the effectiveness of the three methods.

Further, the capability of the proposed methods is validated by analyzing real-world

oscillation events provided by Independent System Operator-New England (ISO-NE).

The remaining sections are organized as follows. Section 4.2 presents the principles of

the three methods. Section 4.3 proceeds to the model reduction techniques used in the

literature for MP and the innovation of Prony analysis improvement using Hankel matrix

rank reduction technique. Section 4.4 presents the case studies. Section 4.5 concludes the

chapter.

4.2 Principles of the Three Methods

4.2.1 Prony Analysis

Prony analysis principle is discussed in Chapter 3 (Section 3.2). Incorporating multiple

measurement data has been introduced in [43]. Consider that the power system data has K

channels which are obtained from the same period of time. For k-th channel (k = 1, · · · , K),

the H matrix and Y vector can be formulated for every channel of the given data and notated

as H(k) and Y (k). Then the a vector can be obtained by solving the following estimation

problem.

[
(H(1))T (H(2))T · · · (H(K))T

]T
a

=

[
(Y (1))T (Y (2))T · · · (Y (K))T

]T (4.1)

where the superscript T notates transpose.
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4.2.2 Matrix Pencil

Consider a single measurement output, in MP, two shifted Hankel matrices H1 and H2

are used. A Hankel matrix is formed in (4.2). Deleting the last row results in H1 while

deleting the first row results in H2. Both matrices are of dimension (L+ 1)× (N − L).

H =



y0 y1 · · · yN−L−1

y1 y2 · · · yN−L
...

...
. . .

...

yL yL+1 · · · yN−1

yL+1 yL+2 · · · yN


(L+2)×(N−L)

(4.2)

H1 = H(1 : L+ 1, :) (4.3)

H2 = H(2 : L+ 2, :) (4.4)

H1 can be decomposed and expressed as follows.

H1 = PβQ (4.5)

where P ∈ R(L+1)×n, β ∈ Rn×n, and Q ∈ Rn×(N−L).

P , Q, and β are defined as follows.

P =



1 1 · · · 1

z1 z2 · · · zn
...

...
...

zL1 zL2 · · · zLn


, Q =



1 z1 · · · zN−L−1
1

1 z2 · · · zN−L−1
2

...
...

...

1 zn · · · zN−L−1
n


,

β = diag([R1, R2, · · · , Rn]).

(4.6)
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H2 can be expressed as:

H2 = PZ0βQ (4.7)

where Z0 is a diagonal matrix:

Z0 = diag([z1, z2, · · · , zn]). (4.8)

A generalized eigenvalue problem can be formulated based on the two shifted Hankel

matrices. The eigenvalue z that can make zH1−H2 to have a rank less than n must be one

of the system eigenvalues zi. This point can be proven by the following.

zH1 −H2 = zPβQ− PZ0βQ = P (zI − Z0)βQ. (4.9)

Hence, if z = zi, zH1 −H2 will have a rank less than n. Thus, z can be found by solving an

ordinary eigenvalue problem:

zI −H†1H2. (4.10)

Since H1 and H2 are Hankel matrices with rank n, SVD-based rank reduction can be

performed on the two matrices. The rank reduction makes the eigenvalue identification

robust against noise.

4.2.2.1 SVD-Based Rank Reduction

SVD-based rank reduction is briefly described here. A thin matrix A ∈ RM×N with rank

of N can be decomposed as the follows.

A = UASAV
T
A (4.11)
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where UA ∈ RM×M and VA ∈ RN×N are two unitary matrices. SA ∈ RM×N is a diagonal

matrix with singular values of A (σA1 ≥ σA2 · · · ≥ σN ≥ 0) as diagonal components. The

rank reduction technique can be applied to (4.11) as follows.

A =

[
UA1 UA2

]SA1 0

0 SA2

[VA1 VA2

]T
(4.12)

where UA1 ∈ RM×n, UA2 ∈ RM×(M−n), SA1 ∈ Rn×n, SA2 ∈ R(M−n)×(N−n), VA1 ∈ RN×n and

VA2 ∈ RN×(N−n). The reduced rank matrix A′ is obtained as the following:

A ≈ A′ = UA1SA1V
T
A1 (4.13)

where A′ has the same dimension of A. However, its rank is reduced to n.

SVD-based rank reduction can be applied to the Hankel matrix H in (4.2). The Hankel

matrix is now expressed as follow.

H(L+2)×(N−L) = USV T (4.14)

where U ∈ R(L+2)×n, S ∈ Rn×n, V ∈ R(N−L)×n. The two shifted Hankel matrices can be

expressed as follows.

H1 = U1SV
T (4.15)

H2 = U2SV
T (4.16)

where U1 is the first (L+ 1) rows of U and U2 is the last (L+ 1) rows of U .
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Equation (4.9) can be expressed as follows.

zH1 −H2 = (zU1 − U2)SV T . (4.17)

Hence, zi can be found as the eigenvalues of U †1U2.

4.2.2.2 Multiple Channel Consideration

Multiple channel handling technique is introduced in [73]. For each channel, two shifted

Hankel matrices will be formed. Notate H
(k)
1 and H

(k)
2 as the Hankel matrices based on

channel k. The aggregated Hankel matrices are as follows.

H1 =

[
H

(1)
1 , H

(2)
1 , · · · , H(K)

1

]
(4.18)

H2 =

[
H

(1)
2 , H

(2)
2 , · · · , H(K)

2

]
(4.19)

The two Hankel matrices can be decomposed in the similar aforementioned way.

H1 = PβQ (4.20)

H2 = PZ0βQ (4.21)

where P and Z0 are defined the same as those in (4.6) and (4.8). β and Q are defined as the

aggregated ones. Consider β(k) and Q(k) as those formed based on k-th channel. Then the

aggregated matrices are as follows.

β =

[
β(1) β(2) · · · β(K)

]
(4.22)

Q = diag([Q(1), Q(2), · · · , Q(K)]). (4.23)
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The system roots zi can be obtained as the generalized eigenvalues that make the following

matrix rank less than n:

zH1 −H2 (4.24)

Similarly, SVD rank reduction can be applied to H1 and H2. Based on those rank-reduced

matrices, the eigenvalues will be found.

4.2.3 Eigensystem Realization Algorithm

Eigensystem realization algorithm (ERA) assumes that the dynamic response is due to

an impulse input [8]. Consider a Linear-Time Invariant (LTI) system in discrete domain as

the following:

xk+1 = Axk +Buk, yk = Cxk +Duk (4.25)

where y ∈ RK×1 is defined as the output column vector of the system withK output channels,

A ∈ Rn×n, B ∈ Rn×1, C ∈ RK×n, and D ∈ RK×1 are system matrices. Assuming x0 = 0, the

system response due to an impulse input (u0 = 1, uk = 0, k > 0) can be found as follows.

x0 = 0, y0 = D

x1 = B, y1 = CB

x2 = AB, y2 = CAB

· · ·

xk = Ak−1B, yk = CAk−1B

(4.26)
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Two shifted Hankel matrices are formed as follows.

H1 =



y1 y2 · · · yL

y2 y3 · · · yL+1

...
...

. . .
...

yN−L+1 yN−L+2 · · · yN


K(N−L+1)×L

H2 =



y2 y3 · · · yL+1

y3 y4 · · · yL+2

...
...

. . .
...

yN−L+2 yN−L+3 · · · yN+1


K(N−L+1)×L

(4.27)

It can be seen that the Hankel matrices can be decomposed as follows.

H1 =



CB CAB · · · CAL−1B

CAB CA2B · · · CALB

...
...

. . .
...

CAN−LB CAN−L+1B · · · CAN−1B


(4.28)

=



C

CA

...

CAN−L


︸ ︷︷ ︸

O

[
B AB · · · AL−1B

]
︸ ︷︷ ︸

C

(4.29)

H2 = OAC (4.30)

where O is the observability matrix and C is the controllability matrix.
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Note that the two matrices are of the following dimensions:

O ∈ RK(N−L+1)×n

C ∈ Rn×L

ERA employs SVD and further rank reduction to find two matrices to realize O and C.

First, SVD is conducted for H1 and the resulting matrices are marked with their dimensions

as follows.

H1 = USV T ,

where U ∈ RK(N−L+1)×K(N−L+1),

S ∈ RK(N−L+1)×L, V ∈ RL×L

(4.31)

Only n components of diag(S) will be kept to construct the reduced-rank Hankel matrix H ′1.

H ′1 = U(:, 1 : n)︸ ︷︷ ︸
U ′

S(1 : n, 1 : n)︸ ︷︷ ︸
S′

(V (:, 1 : n)︸ ︷︷ ︸
V ′

)T

U ′ ∈ RK(N−L+1)×n,

S ′ ∈ Rn×n, V ′ ∈ RL×n

(4.32)

Similarly, rank reduction may also be applied to H2 to have a low-rank Hankel matrix H ′2.

It is worth to mention that this step on H2 rank reduction is not used in [8]. Rank reduction

for H2 leads to a superior performance as demonstrated in the case studies in Section 4.4.

From the reduced-rank Hankel matrix, the observability and controllability matrices can be

realized as follows.

O = U ′S ′
1
2 , C = S ′

1
2 (V ′)T (4.33)
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Thus, the system matrix A can be realized through the use of (4.30).

A = S ′
− 1

2U ′
T
H ′2V

′S ′
− 1

2 (4.34)

From A, eigenvalues of the discrete system can be found.

4.3 Order Reduction Techniques

The objective is to obtain eigenvalues of a low-order system. SVD rank reduction has

been employed in MP and the order of the system can be specified. Performance of MP is

excellent in terms of noise handling. One reason is that SVD-based reduction rules out many

small singular values which are related to noise. With this procedure, MP is shown to have

a better performance over Prony analysis [69]. This point is also validated for power system

oscillation studies in [71].

In this section, we explore SVD rank reduction technique to improve the performance of

Prony analysis.

In [69], Hankel matrix rank reduction is suggested for Prony analysis to better handle

noise. On the other hand, the dimension of the Hankel matrix is the same even if the rank

reduction was applied. In the following, an RLC circuit example is presented to first illustrate

the effect on eigenvalue distribution with Hankel matrix rank reduction. As a consequence of

rank reduction, distribution of eigenvalues has a radical change. The dominant eigenvalues

and the non-dominant eigenvalues become clearly separated. With this effect, the non-

dominant eigenvalues are further eliminated. Thus, a low-order system is identified.

A series RLC circuit shown in Fig. 4.1 is used as an illustrative example. A step change

in the source voltage is applied at t = 0 second, the current and the capacitor voltage are

chosen as the measurement. The current i and voltage Vc in Laplace domain are expressed

as follows.
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sV

LR C


 cV


 

LV
 i

Figure 4.1: RLC circuit.

i =
C

LCs2 +RCs+ 1

Vc =
1

s(LCs2 +RCs+ 1)

(4.35)

Obviously, the two signals have different number of eigenvalues. The current has two poles:

λ ≈ − R
2L
± j 1√

LC
. The voltage has these two poles and an additional pole as 0.

The sampling rate is 0.001 s for the measurement data. The number of samples in 0.1

seconds is 101 (N = 101). The system is assumed to have an order of 33. As a result, the

Hankel matrix dimension is 68× 33. As a comparison, order 3 is assumed for another case.

The resulting Hankel matrix has a dimension of 98× 3. For each order assumption, signals

with and without noise (0.3 pu uniformly distributed) are examined. Fig. 4.2 presents the

two cases when order is assumed as 33 and Fig. 4.3 presents the two cases when the order

is assumed as 3.

It can be seen that when the signals have no noise pollution, Prony analysis with different

order assumptions correctly reflect eigenvalues (Figs. 4.2a and 4.3a). The reconstructed

signals match the original signals well. From Fig. 4.2a, it can also be observed that if the

Hankel matrix has a low rank, the resulting identified eigenvalues distribute on the real and

imaginary space with an obvious pattern. The system modes (0, −37.7 ± j2π37.47) are

clearly separated from the other modes.

When the signals are polluted with noise (Figs. 4.2b and 4.3b), it can be seen that the

reconstructed signals match the original ones well when the order is assumed high. If a
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Figure 4.2: RLC circuit reconstructed signals and estimated eigenvalues with assumed
order of 33. (4.2a) without noise. (4.2b) with noise.
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Figure 4.3: RLC circuit reconstructed signals and estimated eigenvalues with assumed
order of 3. (4.3a) without noise. (4.3b) with noise.
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low order is assumed, the match is poor. In addition, when there is noise, the eigenvalues

identified for the 33 order system no longer have a clear pattern. The 37 Hz LC resonance

mode is located more towards the left half-plane (LHP) compared to several other modes.

We now show the effect of rank reduction on the Hankel matrix. Using the same noise

polluted signals shown in Fig. 4.2b and applying rank reduction on the corresponding 68×33

Hankel matrix, the resulting rank-3 Hankel matrix leads to system eigenvalues (shown in Fig.

4.4a) with a similar pattern as that shown in Fig. 4.2a. The three dominant eigenvalues are

clearly separated from the rest. As a step further, only the three dominant eigenvalues are

kept. The reconstructed signals are shown in Fig. 4.4b. It can be seen that the reconstructed

signals are substantially smoother compared to those in Fig. 4.4a.
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Figure 4.4: Reduced-order Prony analysis results of the RLC circuit. (4.4a) with Hankel
matrix rank reduction. (4.4b) with rank reduction and eigenvalue reduction techniques.

A reduced-order Prony analysis has been developed using Hankel matrix rank reduc-

tion and eigenvalue reduction techniques. The improved Prony analysis shows that it can

correctly identify the system poles from noisy signals.
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4.4 Case Studies

Two more case studies are presented in this section which are large-scale power grid

oscillations and real-world oscillation events. All of the proposed methods and simulations

are implemented in MATLAB. The measurement data for the 16-machine 68-bus system are

generated using the power system toolbox (PST) [48], which is a MATLAB-based power

system dynamic simulation. The measurement data for the real-world oscillation events are

generated using MATLAB.

4.4.1 Large-Scale Power Grid Oscillations

A large-scale power grid oscillations case study is presented in this section. The 16-

machine 68-bus test case system (shown in Fig. 3.6) is used for eigenvalue estimation of large-

scale power grid oscillations. As discussed in Chapter 3 (Section 3.4.2), this system represents

the New England Test System (NETS)-New York Power System (NYPS) interconnected

system [52] and has five areas. NETS is represented by area 4 which has generators G1 to

G9, while NYPS is represented by area 5 which has generators G10 to G13. Three other

areas have equivalent generators G14 to G16.

Simulation results are produced by power system toolbox (PST) [48]. The dynamic event

applied is a three-phase fault on line 29-28 at Bus 28 side. It is cleared in 0.01 seconds and

the line is tripped after another 0.05 seconds. Dynamic simulation data after the line tripping

are used for eigenvalue estimation.

The network assumes algebraic voltage and current relationship, while the 16 machines

are modeled as second-order system. Small signal analysis of PST gives 32 eigenvalues.

Among them, four pairs of complex conjugate eigenvalues correspond to inter-area oscillation

modes with frequency in the range of 0.3 Hz to 0.8 Hz.
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Figure 4.5: Large-scale power grid oscillation signal reconstruction and eigenvalue
estimation (Order is 10).

In this case study, eigenvalues from a reduced-order system are sought based on mea-

surements. First, the system is assumed to have an order of 10 as this five-area system is

known to be represented by five equivalent generators, each of two orders [74].

Two voltage deviation signals in different areas (Bus 5 in Area 4 and Bus 67 in Area

1) are chosen for eigenvalue estimation and signal reconstruction. Those two signals are

re-sampled with sampling time interval of 0.02 s. Further, Bus 67’s signal is scaled up 100

times to be in the same order as that from Bus 5. The time periods for all tests are 10

seconds.
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Original Prony analysis without rank reduction cannot give adequate reconstructed sig-

nals even with high orders. Therefore, the proposed reduced-order Prony analysis is applied.

The number of samples is N = 486 for each measurement data. The Hankel matrix width

for the rank reduced Prony analysis is set to be 250. The L parameter for MP and ERA

is chosen as 180. Reduced-order Prony analysis can provide accurate reconstructed signals

as MP and ERA, shown in Fig. 4.5a. The estimated eigenvalues of the three methods are

shown in Fig. 4.5b. It can be seen that all three methods give accurate signal matching

results. In addition, seven eigenvalues, including one at the origin, three modes at 0.37 Hz ,

0.6 Hz, and 0.78 Hz, are identified by all three methods.

Further order reduction is applied to test the capability of each method. The number

of the order is reduced to be 4. Fig. 4.6 presents the estimation results when the order

is assumed as 4. It can be seen that ERA and reduced-order Prony lead to good signal

matching results. Two inter-area oscillation modes are identified by these two methods. On

the other hand, MP does not give good signal matching results. MP identifies one mode in

the inter-area oscillation frequency range, and two real eigenvalues with one at the origin

and another further left.

The three methods can all give reduced-order eigenvalues for power grid oscillation case

study. Reduced-order Prony and ERA show stronger capability in handling reduced-order

systems compared to MP.

4.4.2 Real-World Oscillation Events

In order to validate the effectiveness of the proposed methods, real-world oscillation

events are analyzed. A test cases library of power system oscillations is presented in [75],

and the real-world oscillation data can be found in [76]. The oscillation events are captured

by Independent System Operator-New England (ISO-NE), which is a part of the eastern in-

terconnection in the United States. PMU measurements are collected from different locations
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Figure 4.6: Large-scale power grid oscillation signal reconstruction and eigenvalue
estimation (Order is 4).

of the ISO-NE system during the oscillatory events. Two oscillation events are investigated

and analyzed in this section. The simulation results are carried out in MATLAB.

4.4.2.1 Oscillation Event 1

Oscillation Event 1 occurred on June 17, 2016 with a dominant mode of 0.27 Hz due

to an issue of a generator in the southern area of the eastern interconnection which is out

of the ISO-NE area [76]. The PMU measurements are provided for the first 3 minutes of

this oscillation event. Phase-to-ground voltage magnitudes are shown in Fig. 4.7a. Two
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voltage signals from different substations are selected: Signal 5 (Substation 2) and Signal 13

(Substation 5). The voltage measurements from 40 to 60 seconds are analyzed to detect the

inter-area oscillation. The sampling rate is 0.034 seconds, and the number of samples is 601.

The Hankel matrix width of the reduced-order Prony analysis is 280, while L parameter for

ERA and MP is 200.

First, the system order is assumed as 15 to test the ability of the three methods to identify

the inter-area oscillation. All of the three methods can provide accurate reconstructed signals

compared to the original measurements as shown in Fig. 4.8a. The estimated eigenvalues

are presented in Fig. 4.8b. It can be seen that the three methods can identify the oscillation

mode of 0.27 Hz. The proposed Prony analysis has the dominant mode on the right half-

plane (RHP), and the refined ERA has the dominant mode far right compared to the other

modes. On the other hand, MP has three additional pair of complex conjugate eigenvalues

on the RHP along with the dominant mode. This gives an advantage to the proposed Prony

analysis and ERA which can clearly specify the dominant modes.

In addition, the system order is reduced to be 3 to investigate the effect of the order

assumptions. Fig. 4.9 presents the reconstructed signals and the estimated eigenvalues of

the three methods when the order is assumed as 3. It can be observed that the three methods

have adequate reconstructed signals compared to the original signals. Also, all of the three

methods can identify the dominant mode of 0.27 Hz.

4.4.2.2 Oscillation Event 2

Oscillation Event 2 occurred on October 3, 2017 due to an issue of a generator governor

outside of the ISO-NE, and it has three dominant modes of 0.08, 0.15, and 0.31 Hz [76]. Six

minutes of this oscillatory event are provided from PMU data. Those PMU measurements

contain some bad data which should be removed to get the correct signals. Fig. 4.7b

presents the phase-to-ground voltage magnitudes of this event. To identify the inter-area
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(a) (b)

Figure 4.7: Phase-to-ground voltage magnitudes during the oscillatory events. (4.7a) Event
1. (4.7b) Event 2.
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Figure 4.8: Signal reconstruction and eigenvalue estimation of Event 1 with assumed order
of 15.

modes, the voltage measurements from 270 to 300 seconds are analyzed, and all of the signals

are considered in this case. The number of samples is 901, and the sampling rate is 0.034

seconds. The Hankel matrix width of the three methods is 400.

To examine the capability of each method, the system order is assumed as 15. All of the

three methods have accurate reconstructed signals as shown in Fig. 4.10a. The estimated

eigenvalues of this case are shown in Fig. 4.10b. It can be seen that the proposed Prony

analysis and ERA clearly have the three dominant modes on the RHP. In contrast, MP has
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Figure 4.9: Signal reconstruction and eigenvalue estimation of Event 1 with assumed order
of 3.

two dominant modes (0.15 and 0.31 Hz) on the RHP and one mode of 0.08 Hz on the LHP

which can be difficult to specify the dominant modes for this method. It should be noted

that the three methods have one additional pair of complex conjugate eigenvalues on the

RHP. Lower orders such as 3 or 4 cannot provide accurate reconstructed signals and may

not detect some of the inter-area oscillations of Event 2. Note that order 15 is the lowest

order that can obtain well-matched reconstructed signals in this case.

The dominant modes of the real-world oscillation events can be identified with accu-

racy for the three methods. Reduced-order Prony analysis and ERA can easily specify the

dominant modes from the other modes.

4.4.3 Development Discussion

The three measurement-based identification methods are investigated in this chapter.

Prony analysis method is improved to achieve reduced-order system eigenvalue identification

and noise resilience. Traditional Prony analysis cannot obtain adequate reconstructed signals

and detect the inter-area oscillations with low order assumptions especially in the case of

noisy signals as discussed in Section 4.3. In addition, traditional ERA Hankel matrices
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Figure 4.10: Event 2 signal reconstruction and eigenvalue estimation.

are improved to handle multi-channel data, and the rank reduction technique is applied to

the second shifted Hankel matrix of ERA to enhance its performance. Hence, the reduced-

order Prony analysis and refined ERA have a better performance in detecting the inter-

area oscillation modes and providing the reconstructed signals compared to the traditional

approaches.

Different order assumptions are tested and investigated in this chapter. The chosen order

should be low to adequately identify the dominant modes. The best order assumption is the

lowest order that can provide accurate reconstructed signals. This lowest order can clearly

detect the inter-area oscillation modes. Order assumptions from 3 to 20 are most effective

orders with different systems and PMU measurements, and the lowest one which can provide

well-matched signals should be chosen.

The computational time of the three methods is compared as shown in Table 4.1. The

three methods have similar CPU time when the number of samples is not large, while MP

has a better CPU time compared to reduced-order Prony analysis and ERA in the case of the

large number of samples. Although MP is faster in this case, the proposed Prony analysis

and ERA have a superior result. It can also be seen that the reduced-order Prony analysis

and MP are faster compared to ERA when the number of analyzed signals is large.
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Table 4.1: CPU time comparison of the three methods

System Number of Number of Simulation
CPU

Samples Signals Time (s)
Time (s)

Prony ERA MP

NETS-NYPS 486 2 10 0.4531 0.4688 0.4063

ISO-NE (Event 1) 601 2 20 0.5625 0.5625 0.4375

ISO-NE (Event 2) 901 25 30 18.7188 47.2031 18.2969

Prony analysis, MP, and ERA have proven their capabilities with low orders to iden-

tify the inter-area oscillations in different power system applications including real-world

oscillatory events.

4.5 Conclusion

This chapter examines the principles, multi-channel data handling, and noise resilience

techniques of three eigenvalue identification methods used in power systems: Prony analysis,

Matrix Pencil (MP), and Eigensystem Realization Algorithm (ERA). SVD-based rank reduc-

tion technique is identified as the key to noise resilience and order reduction. Accordingly,

ERA method is refined by applying SVD-based rank reduction on both Hankel matrices.

A reduced-order Prony analysis method through Hankel matrix rank reduction is invented.

The new Prony analysis can accurately identify system eigenvalues from noisy signals. Three

case studies are presented to illustrate the three methods, including a tutorial example on

RLC circuit resonance, a large-scale power grid oscillation example, and real-world oscilla-

tion events. The case study results demonstrate the efficacy of all three methods in accurate

eigenvalue identification.
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Chapter 5: Conclusion and Future Work

5.1 Conclusion

Phasor measurement units (PMUs) are investigated in this research including three main

objectives. First, optimal PMU placement (OPP) problem to reduce the number of PMUs

required to make the system fully observable is discussed. MILP zero injection formulation

is improved to overcome the observability redundancy and optimality drawbacks. A new for-

mulation for nonlinear programming-based PMU placement for zero injection measurement

is proposed and validated to provide the least number of PMUs compared to other methods.

Second, singular values of the Hankel matrix are demonstrated for Prony analysis to serve

as an indicator for estimation accuracy. Signals with large observability also show large

singular values. The influence of model order and noise level is also demonstrated by the

singular values. Third, three eigenvalue identification methods used in power systems, which

are Prony analysis, Matrix Pencil (MP), and Eigensystem Realization Algorithm (ERA), are

examined. The principles, multi-channel data handling, and noise resilience techniques of

three approached are presented. SVD-based rank reduction technique is identified as the key

to noise resilience and order reduction. ERA method is refined by applying SVD-based rank

reduction on both Hankel matrices, and a reduced-order Prony analysis method is invented

through Hankel matrix rank reduction. The new Prony analysis can accurately identify

system eigenvalues from noisy signals.
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5.2 Future Work

A dynamic parameter estimation technique using the measurement-based methods can

be investigated in the future. Using the PMU data and measurement-based methods of

the system identification can give an accurate dynamic parameter estimation without prior

information of the system transfer function. Generator parameters such as inertia constant,

damping coefficients, and regulation speed constant can be estimated. The following sections

discuss the background and present the initial results of the dynamic parameter estimation

using the proposed reduced-order Prony analysis.

5.2.1 Dynamic Parameter Estimation Background

Simulation accuracy can improve the safety and efficiency of the operation of power

systems by providing the security margins and transfer limits [77]. Using PMU data and

measurement-based methods of the system identification can give dynamic parameter estima-

tion. In practical, the dynamic parameters provided by the manufacturer can be inaccurate

due to several reasons such as aging, repairs, or unrecorded gain settings [78]. These in-

accurate parameters can cause a deviation in the simulated and actual dynamic response.

Therefore, power utilities rely on the dynamic parameter estimation to provide accurate

estimation of the generators and enhance the security of power systems.

Dynamic parameter estimation has been investigated in the literature. Based on data,

time-domain data based are examined in [79–86], while the frequency response data based

are discussed in [87–89]. Based on measurements, parameter estimation is obtained with

methods as digital fault recorder and high sampling interval [83, 85], excitation with step

sequence inputs [80,82], short circuit test methods [79,84], and offline test approaches [87–89].

Based on the parameter type, both electrical and mechanical parameters are estimated in

[80,82,86], and only electrical parameter estimation is provided in [79,83–85,87–89].
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In addition, dynamic parameter estimation can be classified into two categories based

on the mathematical estimation approach which are least square estimation and Kalman

filter estimation. Parameter estimation is formulated as least squares estimation (LSE)

in [79–82,84,87,89]. Kalman filter is used to estimate the dynamic parameters in [86,90–92].

LSE-based dynamic parameter identification using discrete autoregression exogenous (ARX)

model is presented in [93]. However, many of these techniques assume high order model or

known model structure, e.g., [81, 82,86].

PMU data based estimation is considered as online and time-domain estimation which has

the capability of estimating the electrical and mechanical related parameters. The majority

of the research in the literature is related to the LSE parameter estimation based on the

time-domain or frequency response data. A few research can be found on LSE dynamic

parameter estimation based on PMU data identification. PMU data based estimation is

limited to state estimation [94] or dynamic state estimation for the second-order mechanical

system [91, 95–97]. However, those approaches are based on Kalman filter estimation that

requires to have a prior information of the transfer function of the power system to formulate

the Kalman estimator which may not be available in real applications.

This future work presents a new dynamic parameter estimation technique using rank-

reduced Prony analysis methods. A rank-reduced Prony analysis to identify the system

eigenvalues with reduced order has been discussed in Chapter 4. The proposed approach is

LSE-based dynamic parameter estimation using PMU data. The model structure is assumed

to be unknown, and a reduced-order model is achieved. This proposed technique is solved

with two main stages. At Stage 1, the eigenvalues are obtained using rank-reduced Prony

analysis which can accurately identify the eigenvalues with reduced-order model. At Stage

2, the A matrix and the system parameters are found by solving a nonlinear optimization

problem. The nonlinear optimization problem is solved by MATLAB toolbox YALMIP [98]

with IPOPT solver [99].
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5.2.2 Two-Machine Power System Model

The two-machine power system model (shown in Fig. 5.1) and the simplified turbine

model (shown in Fig. 5.2) are used as a reduced system for the dynamic parameter estima-

tion. The positions of the rotor’s q-axis of the two machines are represented by δ1 and δ2.

If we assume that the speed (ω) in per unit, we can get the following [100]:

1eP 2eP

1 2

Figure 5.1: Two-machine power system model.

1

1 gT s



1 R



refP mP



Figure 5.2: Turbine model block diagram.

δ̇1 = ω0(ω1 − 1) (5.1)

where ∆ω = ω1 − ω0, and ω0 is a constant nominal speed. Then (5.1) can be linearized at

an equilibrium point as follows.

∆δ̇1 = ω0∆ω1 (5.2)

Note that the linearization is evaluated at x0 as the following:

∆f =
∂f

∂x

∣∣∣∣
x0

∆x (5.3)
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The swing equation in per unit can be represented as follows [100].

ω̇1 =
1

2H1

(Pm1 − Pe1 −D1∆ω1) (5.4)

where H1 is kinetic energy ratio of the rotor and the power base at a constant nominal speed,

Pm1 is the mechanical power, Pe1 is the electrical power, and D1 is the damping coefficient.

After that, the swing equation (5.4) is linearized at initial conditions to result in the

following [100]:

∆ω̇1 =
1

2H1

(∆Pm1 −∆Pe1 −D1∆ω1) (5.5)

From the linearized model, the electrical power can be obtained as follows.

Pe1 = −Pe2 =
E1E2

X
sin δ12 (5.6)

∆Pe1 = −∆Pe2 =
E1E2

X
cos δ12 (∆δ1 −∆δ2) (5.7)

Then (5.5) can be expressed as follows.

∆ω̇1 =
1

2H1

(∆Pm1 − T (∆δ1 −∆δ2)−D1∆ω1) (5.8)

where T is given by the following:

T =
E1E2

X
cos δ12 (5.9)

From the turbine model as shown in Fig. 5.2, the mechanical power for Generator 1 can be

found as:

Pref −
1

R
∆ω = Pm + Tg

dPm
dt

(5.10)
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Ṗm1 =
1

Tg1
(P1,ref −

1

R1

∆ω1 − Pm1) (5.11)

Equation (5.11) can be linearized at an equilibrium point as follows.

∆Ṗm1 =
1

Tg1
(− 1

R1

∆ω1 −∆Pm1) (5.12)

Thus, swing equations for Generator 1 are obtained. Similarly, the equations for Genera-

tor 2 can be provided. For simplification, δ2 can be treated as the reference angle, or δ1− δ2

can be used as state variables to get the following:



∆δ̇12 = ω0(∆ω1 −∆ω2)

∆ω̇1 = 1
2H1

(∆Pm1 − T∆δ12 −D1∆ω1)

∆Ṗm1 = 1
Tg1

(− 1
R1

∆ω1 −∆Pm1)

∆ω̇2 = 1
2H2

(∆Pm2 + T∆δ12 −D2∆ω2)

∆Ṗm2 = 1
Tg2

(− 1
R2

∆ω2 −∆Pm2)

(5.13)

Therefore, the A matrix can be obtained as follows.

ẋ =



0 ω0 0 −ω0 0

− T
2H1

− D1

2H1

1
2H1

0 0

0 − 1
Tg1R1

− 1
Tg1

0 0

T
2H2

0 0 − D2

2H2

1
2H2

0 0 0 − 1
Tg2R2

− 1
Tg2


︸ ︷︷ ︸

A



∆δ12

∆ω1

∆Pm1

∆ω2

∆Pm2


︸ ︷︷ ︸

x

(5.14)
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5.2.3 Formulation of the Dynamic Parameter Estimation

The proposed optimization problem can estimate the model structure and parameter

from the eigenvalues that obtained from rank-reduced Prony analysis method (as discussed

in Chapter 4). The model has nine parameters which are H1, H2, T , D1, D2, Tg1, Tg2, R1,

and R2. Thus, the optimization problem will be as the following:

min
n∑
i=1

e2
i (5.15a)

s.t.: det(λiI − A) + ei = 0, i = 1, 2, · · · , n. (5.15b)

H1 ≥ 0, H2 ≥ 0, T ≥ 0, D1 ≥ 0, (5.15c)

D2 ≥ 0, Tg1 ≥ 0, Tg2 ≥ 0, (5.15d)

R1 ≥ 0, R2 ≥ 0. (5.15e)

where n is the number of the system order. If four parameters are fixed to be true values,

the other five parameters can be found. On the other hand, if all parameters are unknown,

the solution can also be found with prior information of multiple parameters range.

This is a nonlinear optimization problem which is solved by MATLAB toolbox YALMIP

[98] with an IPOPT solver [99]. The unknown parameters of the A matrix are preferred to

be on the numerator to avoid zero initial conditions, then the estimated values of H, Tg, and

R parameters will be inversed. Therefore, the A matrix is re-written as follows.

0 ω0 0 −ω0 0

−TH′
1

2
−D1H′

1

2

H′
1

2
0 0

0 −T ′g1R′1 −T ′g1 0 0

TH′
2

2
0 0 −D2H′

2

2

H′
2

2

0 0 0 −T ′g2R′2 −T ′g2


(5.16)
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5.2.4 Example

The simplified two-machine power system is modeled using power system toolbox (PST)

[48]. Rank-reduced Prony analysis as explained in Chapter 4 is applied for eigenvalue estima-

tion. The system order is assumed to be 5 with two pairs of complex conjugate eigenvalues

and a real one. The estimated eigenvalues are λ = [−0.31111 ± 10.359i,−0.13364 ±

5.1774i,−5.7129× 10−5]T .

Then the constraints for the nine parameters are added with the prior information of

the system. The feasible region can be reduced with adding an acceptable range for some

parameters. Also, it is assumed that H ′1 = H ′2 and D1 = D2 since the two systems have the

same size and damping coefficient. Thus, eleven constraints are added to the optimization

problem as follows.

min
5∑
i=1

e2
i

s.t.: det(λiI − A) + ei = 0, i = 1, 2, · · · , 5.

H ′1 ≥ 0, H ′2 ≥ 0,

20 ≥ T ≥ 1.6,

100 ≥ D1 ≥ 1, 100 ≥ D2 ≥ 1,

T ′g1 ≥ 0, T ′g2 ≥ 0,

100 ≥ R′1 ≥ 1, 100 ≥ R′2 ≥ 1,

H ′1 = H ′2, D1 = D2.

The above nonlinear optimization problem is solved using MATLAB toolbox YALMIP

[98] with IPOPT solver [99]. The actual values and estimated values of the two-machine

power system model parameters are shown in Table 5.1. The number of the iteration in this

optimization problem is 196, while the overall nonlinear problem error is 1.18× 10−9.
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Table 5.1: Two-machine model parameter estimation result

Parameter Actual Value Estimated Value
H1 6.5 6.5569
D1 6 3.5271
Tg1 0.5 0.49294
R1 0.04 0.01
H2 6.5 6.5569
D2 6 3.5271
Tg2 0.5 0.49294
R2 0.04 0.01
T 2 1.6

5.2.4.1 Sensitivity Analysis

Parameter estimation can be improved by having some of the parameters fixed or reducing

the feasible range with prior information of the system. For example, if the lower bound

of parameter T is set to be 2 (20 ≥ T ≥ 2), this can result in a better estimation. In this

case, the reduced feasible regions of D1 and D2 are not required (i.e., D1 ≥ 0 and D2 ≥ 0).

Therefore, only three feasible regions of T , R′1, and R′2 are reduced by an acceptable range

with prior information of the system. Table 5.2 shows the results of the parameter estimation

with 2 as a lower bound of T feasible region. The number of iterations and the overall

nonlinear problem error are 276 and 5.91 × 10−12, respectively. In addition, the estimation

result can also be more accurate when the lower bounds of parameters D1 and D2 are set

to be 6 (100 ≥ D1 ≥ 6 and 100 ≥ D2 ≥ 6) as can be seen from Table 5.3. With those

two constraints, the constraint D1 = D2 will be no longer needed. Therefore, the number of

constraints is reduced to 10 instead of 11. The resulted number of iterations in this case is

107, whereas the nonlinear problem error is 1.24× 10−8.
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Table 5.2: Parameter estimation with different lower bound of T

Parameter Actual Value Estimated Value
H1 6.5 7.9835
D1 6 5.1725
Tg1 0.5 0.48802
R1 0.04 0.01
H2 6.5 7.9835
D2 6 5.1725
Tg2 0.5 0.48802
R2 0.04 0.01
T 2 2.00

Table 5.3: Parameter estimation with different lower bounds of D1 and D2

Parameter Actual Value Estimated Value
H1 6.5 6.4665
D1 6 6.00
Tg1 0.5 0.55315
R1 0.04 0.01
H2 6.5 6.4665
D2 6 6.00
Tg2 0.5 0.55315
R2 0.04 0.01
T 2 1.6

82



www.manaraa.com

References

[1] A. G. Phadke, “Synchronized phasor measurements in power systems,” IEEE Com-
puter Applications in power, vol. 6, no. 2, pp. 10–15, 1993.

[2] B. Xu and A. Abur, “Observability analysis and measurement placement for systems
with PMUs,” in IEEE Power Systems Conference and Exposition, 2004, pp. 943–946.

[3] M. Hurtgen and J. C. Maun, “Advantages of power system state estimation using
phasor measurement units,” in 16th Power Systems Computation Conference, 2008,
pp. 1–7.

[4] North American SynchroPhasor Initiative (NASPI). [Online]. Available: https:
//www.naspi.org/node/372; https://www.naspi.org/node/407

[5] R. F. Nuqui, “State estimation and voltage security monitoring using synchronized
phasor measurements,” Ph.D. dissertation, Virginia Tech, 2001.

[6] M. Young and A. Silverstein, “Factors affecting pmu installation costs,” U.S.
Department of Energy - Office of Electricity Delivery and Energy Reliability,
2014. [Online]. Available: https://www.energy.gov/sites/prod/files/2014/11/f19/
SG-PMU-cost-study-Oct2014.pdf

[7] B. Gou, “Generalized integer linear programming formulation for optimal PMU place-
ment,” IEEE Transactions on Power Systems, vol. 23, no. 3, pp. 1099–1104, 2008.

[8] M. Crow, M. Gibbard, A. Messina, J. Pierre, J. Sanchez-Gasca, D. Trudnowski, and
D. Vowles, “Identification of electromechanical modes in power systems,” IEEE Task
Force Report, Special Publication TP462, 2012.

[9] J. Sanchez-Gasca and J. Chow, “Computation of power system low-order models from
time domain simulations using a hankel matrix,” IEEE Transactions on Power Sys-
tems, vol. 12, no. 4, pp. 1461–1467, 1997.

[10] A. Almunif and L. Fan, “Optimal pmu placement for modeling power grid observability
with mathematical programming methods,” International Transactions on Electrical
Energy Systems, p. e12182, 2019.

83



www.manaraa.com

[11] T. Baldwin, L. Mili, M. Boisen, and R. Adapa, “Power system observability with min-
imal phasor measurement placement,” IEEE Transactions on Power Systems, vol. 8,
no. 2, pp. 707–715, 1993.

[12] K.-S. Cho, J.-R. Shin, and S. H. Hyun, “Optimal placement of phasor measurement
units with gps receiver,” in Power Engineering Society Winter Meeting, 2001. IEEE,
vol. 1. IEEE, 2001, pp. 258–262.

[13] G. Denegri, M. Invernizzi, and F. Milano, “A security oriented approach to pmu posi-
tioning for advanced monitoring of a transmission grid,” in Power System Technology,
2002. Proceedings. PowerCon 2002. International Conference on, vol. 2. IEEE, 2002,
pp. 798–803.

[14] F. Marın, F. Garcıa-Lagos, G. Joya, and F. Sandoval, “Genetic algorithms for optimal
placement of phasor measurement units in electric networks,” Electron. Lett, vol. 39,
no. 19, pp. 1403–1405, 2003.

[15] B. Milosevic and M. Begovic, “Nondominated sorting genetic algorithm for optimal
phasor measurement placement,” IEEE Transactions on Power Systems, vol. 18, no. 1,
pp. 69–75, 2003.

[16] J. Peng, Y. Sun, and H. Wang, “Optimal pmu placement for full network observability
using tabu search algorithm,” International Journal of Electrical Power & Energy
Systems, vol. 28, no. 4, pp. 223–231, 2006.

[17] M. Hajian, A. Ranjbar, T. Amraee, and A. Shirani, “Optimal placement of phasor
measurement units: Particle swarm optimization approach,” in Intelligent Systems
Applications to Power Systems, 2007. ISAP 2007. International Conference on. IEEE,
2007, pp. 1–6.

[18] N. C. Koutsoukis, N. M. Manousakis, P. S. Georgilakis, and G. N. Korres, “Numerical
observability method for optimal phasor measurement units placement using recursive
tabu search method,” IET Generation, Transmission & Distribution, vol. 7, no. 4, pp.
347–356, 2013.

[19] F. Aminifar, C. Lucas, A. Khodaei, and M. Fotuhi-Firuzabad, “Optimal placement of
phasor measurement units using immunity genetic algorithm,” IEEE Transactions on
power delivery, vol. 24, no. 3, pp. 1014–1020, 2009.

[20] S. Chakrabarti, G. K. Venayagamoorthy, and E. Kyriakides, “Pmu placement for power
system observability using binary particle swarm optimization,” in Power Engineering
Conference, 2008. AUPEC’08. Australasian Universities. IEEE, 2008, pp. 1–5.

[21] A. Ahmadi, Y. Alinejad-Beromi, and M. Moradi, “Optimal pmu placement for power
system observability using binary particle swarm optimization and considering mea-
surement redundancy,” Expert Systems with Applications, vol. 38, no. 6, pp. 7263–7269,
2011.

84



www.manaraa.com

[22] D. Dua, S. Dambhare, R. K. Gajbhiye, and S. Soman, “Optimal multistage scheduling
of PMU placement: An ILP approach,” IEEE Transactions on Power Delivery, vol. 23,
no. 4, pp. 1812–1820, 2008.

[23] N. H. Abbasy and H. M. Ismail, “A unified approach for the optimal PMU location for
power system state estimation,” IEEE Transactions on Power Systems, vol. 24, no. 2,
pp. 806–813, 2009.

[24] B. Xu and A. Abur, “Optimal placement of phasor measurement units for state esti-
mation,” in Power Systems Engineering Research Center, PSERC, 2005.

[25] M. Korkali and A. Abur, “Placement of pmus with channel limits,” in Power & Energy
Society General Meeting, 2009. PES’09. IEEE. IEEE, 2009, pp. 1–4.

[26] ——, “Impact of network sparsity on strategic placement of phasor measurement units
with fixed channel capacity,” in Circuits and Systems (ISCAS), Proceedings of 2010
IEEE International Symposium on. IEEE, 2010, pp. 3445–3448.

[27] S. M. Mahaei and M. T. Hagh, “Minimizing the number of pmus and their optimal
placement in power systems,” Electric Power Systems Research, vol. 83, no. 1, pp.
66–72, 2012.

[28] E. Abiri, F. Rashidi, and T. Niknam, “An optimal pmu placement method for power
system observability under various contingencies,” International Transactions on Elec-
trical Energy Systems, vol. 25, no. 4, pp. 589–606, 2015.

[29] F. Aminifar, A. Khodaei, M. Fotuhi-Firuzabad, and M. Shahidehpour, “Contingency-
constrained pmu placement in power networks,” IEEE Transactions on Power Systems,
vol. 25, no. 1, pp. 516–523, 2010.

[30] M. Esmaili, K. Gharani, and H. A. Shayanfar, “Redundant observability pmu place-
ment in the presence of flow measurements considering contingencies,” IEEE Trans-
actions on Power Systems, vol. 28, no. 4, pp. 3765–3773, 2013.

[31] K. G. Khajeh, E. Bashar, A. M. Rad, and G. B. Gharehpetian, “Integrated model
considering effects of zero injection buses and conventional measurements on optimal
pmu placement,” IEEE Transactions on Smart Grid, vol. 8, no. 2, pp. 1006–1013,
2017.

[32] S. Chakrabarti, E. Kyriakides, and D. G. Eliades, “Placement of synchronized mea-
surements for power system observability,” IEEE Transactions on Power Delivery,
vol. 24, no. 1, pp. 12–19, 2009.

[33] N. M. Manousakis and G. N. Korres, “A weighted least squares algorithm for optimal
PMU placement,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3499–3500,
2013.

85



www.manaraa.com

[34] N. Theodorakatos, N. Manousakis, and G. Korres, “Optimal PMU placement using
nonlinear programming,” OPT -i: An International Conference on Engineering and
Applied Sciences Optimization, pp. 240–258, 2015.

[35] N. P. Theodorakatos, N. M. Manousakis, and G. N. Korres, “A sequential quadratic
programming method for contingency-constrained phasor measurement unit place-
ment,” International Transactions on Electrical Energy Systems, vol. 25, no. 12, pp.
3185–3211, 2015.

[36] ——, “Optimal placement of phasor measurement units with linear and non-linear
models,” Electric Power Components and Systems, vol. 43, no. 4, pp. 357–373, 2015.

[37] A. Almunif and L. Fan, “Mixed integer linear programming and nonlinear programming
for optimal pmu placement,” in 2017 North American Power Symposium (NAPS).
IEEE, 2017, pp. 1–6.

[38] Power systems test case archive. [Online]. Available: https://www2.ee.washington.
edu/research/pstca/

[39] R. F. Nuqui and A. G. Phadke, “Phasor measurement unit placement techniques for
complete and incomplete observability,” IEEE Transactions on Power Delivery, vol. 20,
no. 4, pp. 2381–2388, 2005.

[40] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Matpower: Steady-state
operations, planning, and analysis tools for power systems research and education,”
IEEE Transactions on power systems, vol. 26, no. 1, pp. 12–19, 2010.

[41] A. Almunif and L. Fan, “Pmu measurements for oscillation monitoring: Connecting
prony analysis with observability,” accepted, in Power and Energy Society General
Meeting (PES), 2019 IEEE. IEEE, 2019, pp. 1–5.

[42] J. F. Hauer, C. Demeure, and L. Scharf, “Initial results in prony analysis of power
system response signals,” IEEE Transactions on power systems, vol. 5, no. 1, pp. 80–
89, 1990.

[43] D. Trudnowski, J. Johnson, and J. Hauer, “Making prony analysis more accurate using
multiple signals,” Power Systems, IEEE Transactions on, vol. 14, no. 1, pp. 226–231,
1999.

[44] L. Fan, “Data fusion-based distributed prony analysis,” Electric Power Systems Re-
search, vol. 143, pp. 634–642, 2017.

[45] N. Zhou, J. Pierre, and D. Trudnowski, “Some considerations in using prony analysis
to estimate electromechanical modes,” in Power and Energy Society General Meeting
(PES), 2013 IEEE. IEEE, 2013, pp. 1–5.

86



www.manaraa.com

[46] J.-H. Peng and N.-K. Nair, “Adaptive sampling scheme for monitoring oscillations
using prony analysis,” IET generation, transmission & distribution, vol. 3, no. 12, pp.
1052–1060, 2009.

[47] M. Dehghani, B. Shayanfard, and A. R. Khayatian, “Pmu ranking based on singu-
lar value decomposition of dynamic stability matrix,” IEEE Transactions on Power
Systems, vol. 28, no. 3, pp. 2263–2270, 2013.

[48] J. H. Chow and K. W. Cheung, “A toolbox for power system dynamics and control
engineering education and research,” IEEE transactions on Power Systems, vol. 7,
no. 4, pp. 1559–1564, 1992.

[49] J. Khazaei, L. Fan, W. Jiang, and D. Manjure, “Distributed prony analysis for real-
world pmu data,” Electric Power Systems Research, vol. 133, pp. 113–120, 2016.

[50] J. H. Chow, A. Chakrabortty, L. Vanfretti, and M. Arcak, “Estimation of radial power
system transfer path dynamic parameters using synchronized phasor data,” IEEE
Transactions on Power Systems, vol. 23, no. 2, pp. 564–571, 2008.

[51] P. W. Sauer, M. Pai, and J. H. Chow, Power system dynamics and stability: with
synchrophasor measurement and power system toolbox. John Wiley & Sons, 2017.

[52] G. Rogers, Power system oscillations. Springer Science & Business Media, 2012.

[53] S. Brahma, R. Kavasseri, H. Cao, N. Chaudhuri, T. Alexopoulos, and Y. Cui, “Real-
time identification of dynamic events in power systems using pmu data, and potential
applications—models, promises, and challenges,” IEEE Transactions on Power Deliv-
ery, vol. 32, no. 1, pp. 294–301, 2017.

[54] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and control. McGraw-
hill New York, 1994, vol. 7.

[55] A. Almunif, L. Fan, and Z. Miao, “A tutorial on data-driven eigenvalue identifica-
tion: Prony analysis, matrix pencil and eigensystem realization algorithm,” submitted,
International Transactions on Electrical Energy Systems, 2019.

[56] G. Liu, J. Ning, Z. Tashman, V. M. Venkatasubramanian, and P. Trachian, “Oscillation
monitoring system using synchrophasors,” in 2012 IEEE Power and Energy Society
General Meeting. IEEE, 2012, pp. 1–8.

[57] N. Zhou, J. W. Pierre, D. J. Trudnowski, and R. T. Guttromson, “Robust rls methods
for online estimation of power system electromechanical modes,” IEEE Transactions
on Power Systems, vol. 22, no. 3, pp. 1240–1249, 2007.

[58] R. W. Wies, J. W. Pierre, and D. J. Trudnowski, “Use of arma block processing for
estimating stationary low-frequency electromechanical modes of power systems,” IEEE
Transactions on Power Systems, vol. 18, no. 1, pp. 167–173, 2003.

87



www.manaraa.com

[59] N. Zhou, D. J. Trudnowski, J. W. Pierre, and W. A. Mittelstadt, “Electromechanical
mode online estimation using regularized robust rls methods,” IEEE Transactions on
Power Systems, vol. 23, no. 4, pp. 1670–1680, 2008.

[60] J. W. Pierre, D. J. Trudnowski, and M. K. Donnelly, “Initial results in electromechan-
ical mode identification from ambient data,” IEEE Transactions on Power Systems,
vol. 12, no. 3, pp. 1245–1251, 1997.

[61] D. J. Trudnowski, J. W. Pierre, N. Zhou, J. F. Hauer, and M. Parashar, “Performance
of three mode-meter block-processing algorithms for automated dynamic stability as-
sessment,” IEEE Transactions on Power Systems, vol. 23, no. 2, pp. 680–690, 2008.

[62] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C.
Tung, and H. H. Liu, “The empirical mode decomposition and the hilbert spectrum
for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society
of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, no.
1971, pp. 903–995, 1998.

[63] A. R. Messina and V. Vittal, “Nonlinear, non-stationary analysis of interarea oscil-
lations via hilbert spectral analysis,” IEEE Transactions on Power Systems, vol. 21,
no. 3, pp. 1234–1241, 2006.

[64] T. J. Browne, V. Vittal, G. T. Heydt, and A. R. Messina, “A comparative assessment
of two techniques for modal identification from power system measurements,” IEEE
Transactions on Power Systems, vol. 23, no. 3, pp. 1408–1415, 2008.

[65] J.-N. Juang and R. S. Pappa, “An eigensystem realization algorithm for modal param-
eter identification and model reduction,” Journal of guidance, control, and dynamics,
vol. 8, no. 5, pp. 620–627, 1985.

[66] E. G. Gilbert, “Controllability and observability in multivariable control systems,”
Journal of the Society for Industrial and Applied Mathematics, Series A: Control,
vol. 1, no. 2, pp. 128–151, 1963.

[67] R. E. Kalman, “Mathematical description of linear dynamical systems,” Journal of the
Society for Industrial and Applied Mathematics, Series A: Control, vol. 1, no. 2, pp.
152–192, 1963.

[68] Y. Hua and T. K. Sarkar, “Matrix pencil method for estimating parameters of ex-
ponentially damped/undamped sinusoids in noise,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. 38, no. 5, pp. 814–824, 1990.

[69] T. K. Sarkar and O. Pereira, “Using the matrix pencil method to estimate the param-
eters of a sum of complex exponentials,” IEEE Antennas and Propagation Magazine,
vol. 37, no. 1, pp. 48–55, 1995.

88



www.manaraa.com

[70] M. L. Crow and A. Singh, “The matrix pencil for power system modal extraction,”
IEEE Transactions on Power Systems, vol. 20, no. 1, pp. 501–502, 2005.

[71] L. L. Grant and M. L. Crow, “Comparison of matrix pencil and prony methods for
power system modal analysis of noisy signals,” in North American Power Symposium
(NAPS), 2011. IEEE, 2011, pp. 1–7.

[72] Y. Hua and T. K. Sarkar, “On svd for estimating generalized eigenvalues of singular
matrix pencil in noise,” in 1991., IEEE International Sympoisum on Circuits and
Systems. IEEE, 1991, pp. 2780–2783.

[73] T. K. Sarkar, S. Park, J. Koh, and S. M. Rao, “Application of the matrix pencil
method for estimating the sem (singularity expansion method) poles of source-free
transient responses from multiple look directions,” IEEE Transactions on Antennas
and Propagation, vol. 48, no. 4, pp. 612–618, 2000.

[74] J. H. Chow, Power system coherency and model reduction. Springer, 2013.

[75] S. Maslennikov, B. Wang, Q. Zhang, E. Litvinov et al., “A test cases library for methods
locating the sources of sustained oscillations,” in 2016 IEEE Power and Energy Society
General Meeting (PESGM). IEEE, 2016, pp. 1–5.

[76] Test cases library of power system sustained oscillations. [Online]. Available:
http://web.eecs.utk.edu/∼kaisun/Oscillation/

[77] E. P. T. Cari and L. F. C. Alberto, “Parameter estimation of synchronous generators
from different types of disturbances,” in 2011 IEEE Power and Energy Society General
Meeting. IEEE, 2011, pp. 1–7.

[78] M. Shen, V. Venkatasubramanian, N. Abi-Samra, and D. Sobajic, “A new framework
for estimation of generator dynamic parameters,” IEEE Transactions on Power Sys-
tems, vol. 15, no. 2, pp. 756–763, 2000.

[79] J. Sanchez-Gasca, C. Bridenbaugh, C. Bowler, and J. Edmonds, “Trajectory sensitivity
based identification of synchronous generator and excitation system parameters,” IEEE
Transactions on Power Systems, vol. 3, no. 4, pp. 1814–1822, 1988.

[80] Z. Zhao, F. Zheng, J. Gao, and L. Xu, “A dynamic on-line parameter identification
and full-scale system experimental verification for large synchronous machines,” IEEE
Transactions on Energy Conversion, vol. 10, no. 3, pp. 392–398, 1995.
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Appendix A: MATLAB Code for Dynamic Parameter Estimation

clear;

clc;

yalmip(’clear’)

%Yalmip variables

H1 = sdpvar(1,1);

H2 = sdpvar(1,1);

T = sdpvar(1,1);

D1 = sdpvar(1,1);

D2 = sdpvar(1,1);

Tg1 = sdpvar(1,1);

Tg2 = sdpvar(1,1);

R1 = sdpvar(1,1);

R2 = sdpvar(1,1);

%Solver selection

ops = sdpsettings(’solver’,’ipopt’);

%From rank reduced Prony with order 5

Lambda=[ -0.31111 + 10.359i;

-0.31111 - 10.359i;

-5.7129e-05 + 0i;

-0.13364 + 5.1774i;

-0.13364 - 5.1774i;

];

e = sdpvar(length(Lambda),1,’full’,’complex’);

w0=2*pi*60;

A=[0 w0 0 -w0 0 ;

-T*H1/(2) -D1*H1/(2) H1/(2) 0 0;

0 -Tg1*R1 -Tg1 0 0;

T*H2/(2) 0 0 -D2*H2/(2) H2/(2);
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0 0 0 -Tg2*R2 -Tg2];

%Optimization problem constraints

for k=1:length(Lambda);

C(k,1)=det(Lambda(k)*eye(length(Lambda))-A);

end

optimize([C == e;...

H1 >= 0; H2 >= 0; 20 >= T >= 1.6; 100 >= D1 >= 1; 100 >= D2 >= 1; Tg1 >= 0;

Tg2 >= 0; 100 >= R1 >= 1; 100 >= R2 >= 1; H1 == H2; D1 == D2], norm(e), ops)

obj = value(norm(e));

%Estimated Parameters

H1 = 1/value(H1);

H2 = 1/value(H2);

D1 = value(D1);

D2 = value(D2);

Tg1 = 1/value(Tg1);

Tg2 = 1/value(Tg2);

R1 = 1/value(R1);

R2 = 1/value(R2);

T = value(T);
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